

Computing Device Programming Activity

This page contains the online material for the Computing activity on
Device Programming, designed at the Engineering Department of the
University of Cambridge.

Contents:

	Introduction
	Device programming activity

	Tutorial
	Getting started

	Keep going

	Debugging

	Serial communication

	Activity 1: Memory and interrupts
	Learning objectives

	Task to complete

	What you may need to learn

	Activity 2: I2C bus and sensors
	Learning objectives

	Task to complete

	What you may need to learn

Document license and copyright

These documents are licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License. See
http://creativecommons.org/licenses/by-sa/4.0/ for the license.

Copyright 2017-2023 by A.J. Kabla, P.O. Kristensson, J. Durrell, F Forni.

Contact: ajk61@cam.ac.uk

Documentation repository

These documents are managed at:

https://github.com/CambridgeEngineering/PartIB-Computing-Device-Programming

Introduction

Device programming activity

Why such an activity?

Across all branches of Engineering, the use of sensor networks and
embedded computation has become ubiquitous. Whether you look at the
building industry, transportation or biomedical engineering, networks
of interconnected sensors able to process and communicate data are
increasingly involved in the control and diagnostic of complex
operations. This technological trend has now reached most corners of
not only industrial processes, but also personal life, encompassed by
the fairly generic expression of Internet of Things.

[image: Wilgengebroed on Flickr]

Source: Wilgengebroed on Flickr.

The modern Engineer must therefore embrace this ubiquity, and make
sure that whatever their specialisation is, they master the basic
aspects of sensing and communication. This series of practical
activities is here to fill this gap and provide engineering students
with the computational and experimental skills to approach with more
confidence the development of simple embedded devices to perform
common tasks. The tasks selected cover the basic operations of a
common ARM based microcontroller. Once familiar with a
microcontroller, you will soon appreciate that they are all similar,
and that your new skills are amazingly transferable.

A few words about sponsors

This activity has been made possible by two sponsors.

	ARM and STMicroelectronics have donated the Nucleo microcontrollers used in this lab. We are very grateful to them.

	The University of Cambridge provided financial support through a
Teaching And Learning Innovation Fund to run a number of student
projects and promote the use of Open Source tools in undergraduate
education. This grant currently covers the cost of the 3rd year (IIA) project
GM2, Technology for the poorest billion, as well as part of the
running costs of this second year activity.

Tutorial

Introduction

This part of the device programming activity can be done as soon as
the boards are in your hands. Watch a few videos (curated from the
web), learn about the general programming approach, and get the LEDs
to blink!

You will then think again about how to use functions in your programs,
and learn how to use the push button integrated with the board.

The debugging section will make sure you are familiar with what
happens when you make errors. It is quite difficult to understand what
problems you have when you don’t have a screen to report messages -
but there are techniques available.

Many people find it useful to pass text to the computer connected to
the board for debugging purpose. While the corresponding
microcontroller code is easy, it is more difficult to configure your
computer to get it to work. Give a try, but don’t
panic if you can’t!

Requirements

	STM32F746 STMicroelectronics [http://www.st.com/en/evaluation-tools/nucleo-f746zg.html] development board (provided)

	Micro-USB to USB cable (transmitting power & data)

	Computer with web browser, internet connection and USB port available.

Contents:

	Getting started
	What is a microcontroller?

	ARM & mbed microcontrollers

	A first project

	Keep going
	Functions

	Physical input with a push button

	Debugging
	Errors

	Using the serial port to monitor and debug programs

	Serial communication
	Receiving strings from the computer

	Creating a simple python interface

	A more complex example

http://www.st.com/en/evaluation-tools/nucleo-f746zg.html

Getting started

What is a microcontroller?

Watch this short video (https://www.youtube.com/embed/jKT4H0bstH8) if you are not sure what a micro-controller is.

 Keep going

Keep going

Functions

Let’s refresh your mind regarding the declaration and use of functions in C/C++.

	Create a new project on the mbed development site. Select the same template (“Blinky LED test for the ST Nucleo boards”), but give it a new project name. If you were to select a blank template, you would miss the mbed.h header file that contains many important elements for your code.

	Replace the demo code with the code below. What does the select_led function do? If you are intrigued by the expression “t%3”, look for its definition; it is the remainder after division of t by 3, also called modulo [https://en.wikipedia.org/wiki/Modulo_operation].

#include "mbed.h"

// Green LED
DigitalOut led1(LED1);
// Blue LED
DigitalOut led2(LED2);
// Red LED
DigitalOut led3(LED3);

void select_led(int l)
{
 if (l==1) {
 led1 = true;
 led2 = false;
 led3 = false;
 }
 else if (l==2) {
 led1 = false;
 led2 = true;
 led3 = false;
 }
 else if (l==3) {
 led1 = false;
 led2 = false;
 led3 = true;
 }
}

int main() {
 int t=0;
 while(true) {
 select_led(t);
 wait(0.5);
 t=(t%3)+1;
 }
}

Task

Modify the program so that select_led(0) turns all the LEDs off, and select_led(-1) turns them all on.

Change the sequence such that the pattern is {all off, led 1, led 2, led 3, all on, all off, etc.}.

For a more immersive experience, try your code while visiting
this page [https://www.youtube.com/watch?v=q_F9Nrs7ODQ] .

Task (optional)

Program a LED sequence inspired by this video clip [https://www.youtube.com/watch?v=oNyXYPhnUIs].

Physical input with a push button

The code below exploits a useful inclusion in your development board,
a push button!

#include "mbed.h"

DigitalIn button(USER_BUTTON);
DigitalOut led2(LED2);

int main()
{
 led2=0;
 while(true)
 {
 if (button == 1)
 led2 = true;
 else led2 = false;
 // Fyi, C programmers often like to turn such tests into logical statements:
 // led2= !(button == 0);
 // The "!" presents the logical negation.
 wait(0.02); // 20 ms
 }
}

Task

Create a new project for it, compile it, install it on your
board, and try it. What happens with you press the button? Is that
what you expected?

USER_BUTTON is a constant defined to correspond to the pin number
attached to the blue button.

When pressed button is true (1) and false (0) otherwise. By assigning
its value to the LED, we can control the LED with the button.

The movie clip below (https://www.youtube.com/embed/XmWqP8laxxk) explains some of this using external LED and
switch. Look at it if you would like more information.

 Debugging

Debugging

Debugging is an important part of programming. Due to the lack of
interfaces such as screen or sounds, one relies by default on the
basic LEDs to investigate program errors. But luckily it is also
possible, with a bit of extra effort, to establish text communications
with the computer through the USB connection.

In this section, we will explore different types or errors, and
techniques to detect them and try to address them.

Errors

Compile time errors

Exercise

Try to compile the code below. Read the three errors; they can be
seen in the compile output section at the bottom of the window, or
by hovering your mouse over relevant red line in the scroll
bar. Fix the errors.

#include "mbed.h"

DigitalOut myled(LED1);

int main() {
 while(true) {
 led1 = 1; // LED is ON
 wait(0.2); // 200 ms
 led1 = OFF; // LED is OFF
 wait(1.0) // 1 sec
 }
}

Execution time errors

Exercise

Compile the code below. It should not give you any error. Move
it to your controller.

#include "mbed.h"

// Pin D9 supports Pulse Width Modulation (PWM)
// Pin D8 does not support Pulse Width Modulation (PWM) --> run time error expected.

PwmOut led(D9);

int main() {
 led = (float)0.5;
 while(true) { }
}

You would not see much, but it sends on pin D9 a square signal that
you could detect on an oscilloscope. If you are curious and have a
bit of spare time, feel free to read about what Pulse Width
Modulation (PWM) [https://en.wikipedia.org/wiki/Pulse-width_modulation] does; you
don’t need to look at this now though. This is very handy to control
the brightness of LEDs for instance.

As it happens, the pin D9 does support PWM, so all works fine. But pin
D8 does not. Try changing the pin D9 to D8 in the code and observe the
result.

The code should compile without error. But the board will then display its default runtime-error behaviour.
This behaviour may depend on the version of the hardware and libraries you are using.
You may notice the Ethernet port LED flashing irregularly, or LED 1 flashing
with a pattern of 4 long and 4 short blinks. This is the signal that
the controller has experienced a runtime error.

The compiler does not fully check the suitability of the pins when the
code is compiled, causing the microcontroller to crash when it tries
to execute the program on inappropriate pins.

These errors are more subtle to detect as the signals from the board are not clearly documented and not always consistent.
If you struggle to identify the runtime error, don’t get stuck and progress to the next section.
Just remember that such errors exist, and note the importance of testing as you go along, for instance using LED blink patterns to monitor your progress along the executiong of the code, or using the technique introduced below.

Debugging strategies

There is a lot more information online on this topic. You will find a
few more ideas there:

https://os.mbed.com/handbook/Debugging

Using the serial port to monitor and debug programs

This section is more advanced, but really useful once you get it to
work. Communications between the microcontroller and computer will be developed further in the following tutorial.

Different operating systems will use different
software (that you may need to install) in order to talk to the board.
Each operating system will also have different naming conventions to identify the port used to connect to the board.
Therefore, it is difficult to provide here generic instructions, and you will have to find your way through other docs and tutorials.

You can get your board to send text messages to your computer using Serial communications.
What is difficult here is that it depends on the computer
connected to the board. Different operating systems will use different
software (that you may need to install) to communicate with the board,
different names for the port used to connect the board, and they would
behave slightly differently. Give it a try, but don’t panic if it does not work
for you straight away. You can go through the next activity without
reading text from the board.

Read the first half of the mbed doc on debugging with printf() calls [https://docs.mbed.com/docs/mbed-os-handbook/en/latest/debugging/printf/],
until the section Printf() from an interrupt context.

You will need to use a Terminal to handle the communication with the board
and display text. This page may be useful to install one:

https://os.mbed.com/handbook/Terminals

Give it a try, but don’t panic if it does not work
for you straight away. You can go through the activity 1 without
reading text from the board, but serial communication is required for activities 2 and 3.

Example

Exercise

The program below should cycle the three LEDs, but doesn’t work
quite as expected. You can try it on your device.
The third LED is not blinking, and you may assume at first that
it is faulty.

#include "mbed.h"

Serial pc(SERIAL_TX, SERIAL_RX);

// Green LED
DigitalOut led1(LED1);
// Blue LED
DigitalOut led2(LED2);
// Red LED
DigitalOut led3(LED3);

void select_led(int l)
{
 if (l==1) {
 led1 = true;
 led2 = false;
 led3 = false;
 }
 else if (l==2) {
 led1 = false;
 led2 = true;
 led3 = false;
 }
 else if (l==3) {
 led1 = false;
 led2 = false;
 led3 = true;
 }
}

int main() {
 pc.baud(9600);
 int t=1;

 pc.printf("Start!\r\n", t);

 while(true) {
 select_led(t);
 pc.printf("LED %d is ON.\r\n", t);
 wait(0.5);
 // cycles the values of t
 // check how the modulo operation (%) works if unsure
 t=(t+1)%3;

 }
}

But the output of the program looks like this:

Start!
LED 1 is ON.
LED 2 is ON.
LED 0 is ON.
LED 1 is ON.
LED 2 is ON.
LED 0 is ON.
LED 1 is ON.
LED 2 is ON.
LED 0 is ON.
LED 1 is ON.
...

Use this information to find the problem!

Catching the output from Python

Serial communications can be used for much more than debugging.
The example below shows how to catch the text in python (running on your computer)
using the pySerial library [https://pythonhosted.org/pyserial/].
You could process it further if needed.

import serial
board = serial.Serial("/dev/ttyACM0", 9600)
This creates an object able to establish a serial communication channel
with the board. The first parameter depends on your operating system
and probably needs to be updated.
The second is the baud rate. It needs to match the board's settings.

while True:
 line = board.readline()
 print(line)

Feel free to test this script. If you are using Linux, you may need to
run it as a super-user to gain access to the port, i.e. launch it from
a terminal using `sudo python script_name.py’’.

Of course you can also communicate the other way around. Serial
communication is very handy to get devices to interact with computers,
or with each other. More information is available on the arm/mbed
website:

https://os.mbed.com/handbook/SerialPC#serial-communication-with-a-pc

 Serial communication

Serial communication

Many protocols exist to allow devices to communicate with each other. In this section, we briefly present the key steps required to exchange information between the microcontroller and a computer connected to it on a USB port. This port was primarilly used, so far, to program the device, but as seen in the previous section, it can also be exploited to pass messages as strings of characters. We will first see how to pass strings from the computer to the device, and then develop a simple python interface to send and receive data, and delegate computational tasks.

Receiving strings from the computer

The code below shows how to capture information from the user through the Serial (USB) port. The function doing all the work is scanf. It reads from the serial port a string, and uses the format given as first parameter to extract variables in specified format. The syntax is not trivial, and rather typical of C programming, but the function is actually very powerful and flexible as a result. In all cases, a variable needs to be declared to receive the value before the function is called. It is passed to the scanf function as a reference, i.e. an address in memory where the variable has to be written. More on this as part of activity one.

#include "mbed.h"

Serial pc(SERIAL_TX, SERIAL_RX);

int main() {

 // Reading a string from the computer

 char s[32]; // Array of characters to store the name

 pc.printf("\r\nPlease type your name.\r\n");
 pc.scanf("%s",s);
 pc.printf("Your name is %s.\r\n", s);

 // Reading integers and flaoting point values

 int n;

 pc.printf("\r\nPlease type an integer and I'll tell you what its double is.\r\n");
 pc.scanf("%d",&n);
 pc.printf("2 x %d = %d\r\n", n, 2*n);

 float f;

 pc.printf("\r\nLet's do the same with a floating point number...\r\n");
 pc.scanf("%f",&f);
 pc.printf("2 x %f = %f\r\n", f, 2*f);

}

Exercise

Try the code above. Depending on your serial terminal, you may or may not see the characters you type, or may have to enter them in a specific text box. Look for the documentation of your serial terminal if needed. Once you get it to work, modify it to request the name and age of the user, and return a single sentence as a string containing the name and age of the user.

Creating a simple python interface

Delegating work to the microcontroller

The code below uses serial input and output to delegate a very simple task to the microcontroller, adding two numbers together! This is obviouly a very ineffective way to add integers, but serves notheless as a proof of concept.

#include "mbed.h"

Serial pc(SERIAL_TX, SERIAL_RX);

int main() {

 int n1, n2;

 while(1){
 pc.scanf("%d",&n1);
 pc.scanf("%d",&n2);
 pc.printf("%d\n", n1+n2);
 }
}

Exercise

Try the code above and make sure it works fine. What happens if you try to add fractional numbers? Try to make it work for floating point numbers.

Python serial library

Here is a piece of python code initiating a serial channel to the microcontroller, sends two strings representing numbers to add, and read the response of the micro-controller, as a string.

import serial
board = serial.Serial("/dev/ttyACM0", 9600)

communicating with strings

board.write(b'2\n')
board.write(b'5\n')
board.readline()

The port name "/dev/ttyACM0" depends on your operating system and the way it would label USB devices, as discussed in the debugging section. Replace by the port name on your system.

The characters "\n" are needed as they correspond to carriage return instructions that the microcontroller monitors before scaning the input.

As it is, it is not very elegant, but the coversions back and forth to strings could be packaged into a python function, only exposing to the user a relatively simple interface.

def mysum(n1, n2):
 board.write(str(n1) + b'\n')
 board.write(str(n2) + b'\n')
 return(int(board.readline()))

Exercise

Use this python interface to communicate with your microcontroller. Add some code to the microcontroller program to toggle the state a LED each time a sum is generated, as a visual confirmation that it did the work.

A more complex example

Why not try a more challenging task…

Exercise - part a

Create code on the microcontroller to calculate the n first elements of a mathematical series, for instance the Fibonacci series. Read n from the serial port, and output the resulting elements on the serial port too.

Exercise - part b

Write a python function taking n as a parameter, and returning the n first elements of the series as an array or list. The function must delegate the calculating to the microcontroller.

 Activity 1: Memory and interrupts

Activity 1: Memory and interrupts

Learning objectives

This activity will teach you ways to catch user input, respond to it, and
record data based on these events.
These are very generic aspects of device programming.

For practical reasons, you will learn and practice these skills using the
embedded LEDs and button, which somehow constrains what can be done.
This activity however sets the foundations to handle more complex sensor data.

Task to complete

The aim is to program your microcontroller to record a sequence of colours
entered by the user, and then play it back.
Here is the proposed approach:

	
	The board starts by cycling the three LEDs, turning them on one at time, and switching every second:
	LED1 (green) for 1s –> LED2 (blue) for 1 sec –> LED3 (red) for 1s –> LED1 for 1 sec, etc.

	
	While the colours are cycling, the user selects a colour by pressing the button.
	The colour that is ON at this time is recorded.

	
	The process continues until either:
	
	Option 1: N colours have been entered (the size of the sequence N is set in the code), or

	Option 2: the user double-clicks the button to indicate the end of the sequence.

	Once recording is completed, the recorded sequence is played back on the LEDs.

Option 1 is simpler, and is
the recommanded task for most students.
Option 2 is more challenging
and may be preferred by students who have more experience, and/or those who
want to extend develop their skills beyond what is required for this activity.

The video below presents a demo of the first option, so that you know what to aim for (https://www.youtube.com/embed/PDv8u4roZXs).

 Pointers

Pointers

This page provides background information to better understand the techniques used in this activity.
You will find a lot more information online about this topic online, possibly too much.
The paragraphs below are really highlighting the minimum required to not be surprised by the some the syntax used later.

Memory and address of variables

You already know that a key difference between C/C++ and python is the fact that variables have a specific type and need to be declared.

When a variable is declared in a program:

int x;

the compiler allocates a region of the available memory to contain data of the type specified.
For an integer, it would allocate 4 bytes (32 bits) to store it.
Whenever you refer to x in your code, the compiler understands that you talk about the content stored in the area of memory that was allocated when you created the variable x.

When you write:

x=5;

the compiler writes in the block of memory associated with x the binary representation of the integer 5.

In general, you don’t need to know where your variable is in memory; you just need to know it is called x.
In some occasions it is however convenient to know the location in memory of a variable, called its address.
In this section, we will discuss about how to manipulate variables (and functions) using their memory address.

Considering again the variable x, one can get its address using the notation &x.
The type of &x is generally not the same as the type of x.
An object storing an address of a particular data-type is called a pointer.

You can declare pointers like other variables, although the syntax is a bit unusual.
The code:

int* p;
p = &x;

declares a pointer to an integer.
In principle, it does not really matter whether the pointers to an int or anything else; an address in memory is just a number regardless of what it points to.
A pointer to an integer could in practice point to an area of memory where you stored a float or even some code.
The compiler uses however this information to help you check consistency - you could do horrible things with pointer if you don’t use them properly.
The following code should for instance return an error:

float x;
int* p;
p = &x;

How to manipulate data stored at a particular address?

While &x represents the address of x, *p represents the object stored at the address p.
The line:

*p=3;

would store 3 in the variable x.

Why is this useful?

In C/C++, when a function is called with parameters, the value of the parameters are passed, but not the variables themselves.
So the function cannot modify the values of its parameters.

Imagine you want to create a function that swaps the values of its parameters.
You could write something like this:

void swap(int a, int b)
{
 int temp;
 temp=a;
 a=b;
 b=temp;
}

But this would not work, because if you call swap(x,y), the variables a and b in the swap function would relate to new integer variables that contain copies of the values of x and y.

Pointers offer a way to solve this issue.
Look at the following code and try to understand what it does.

void swap(int* a, int* b)
{
 int temp;
 temp=*a;
 *a=*b;
 *b=temp;
}

Now instead of passing the values to the function, we provide the location of the data in memory.
The function can now manipulate the content stored in memory to achieve the swap.

This function would work. To call it, we would need to pass the address of the variable instead of their values, i.e. call it with:

swap(&x, &y)

to swap the content of the variable x and y;

Task

Without writing a full program and compiling it, think about how you would create a function neg(x) that changes the sign of the variable x.
Hint: the function would be called using neg(&x)…

Function pointers

Pointers can also contain the address of a section of compiled code in memory, rather than data.
This allows us to pass a function as a parameter to another function by passing the address of its code in memory.
We will use this later to tell the microcontroller what to do (i.e. what code to execute) when particular events occur.

For now, let’s just look at a typical situation where this would be useful.
Imagine that you want to find the second derivative of a function \(f\).
To find a good numerical estimate, you can use the central finite difference [https://en.wikipedia.org/wiki/Finite_difference_coefficient] relationship that you studied in first year:

\[\frac{d^2f}{dx^2} = \frac{f(x-h) - 2 f(x) + f(x+h)}{h^2}\]

Your implementation is likely to be generic enough to be applied to any function.
Passing the function as a parameter is useful to make sure that such numerical methods
can be applied to any suitable function.

Study the code below and focus on the implementation of the second_derivative function.
It uses the USB Serial communication method introduced in the tutorial section
to output results, which is useful here to monitor what happens.

#include "mbed.h"

Serial pc(SERIAL_TX, SERIAL_RX);

float f_1(float x)
{
 return(x-x*x);
}

float second_derivative(float (*f)(float), float x)
{
 float h = 0.001;
 float d2fdx2;
 d2fdx2 = (f(x-h) - 2 * f(x) + f(x+h)) / (h*h);
 return d2fdx2;
}

int main() {
 pc.baud(9600);
 float x=1.;

 pc.printf("Function Pointer test program. \r\n");

 pc.printf("Function value: f(%f)=%f \r\n", x, f_1(x));

 pc.printf("Second derivative: %f \r\n", second_derivative(f_1, x));

}

Note that we need to specify fully in the declaration of second_derivative the types of the input and output of the function we will pass: float (*f)(float). This makes sure the compiler also knows how to interact with the function, i.e. how to package its input, and how to interpret its output.

This example may look confusing if you are reading attentively enough.
<<<<<<< HEAD
Why didn’t we pass the address of the function, using second_derivative(&f_1, 1)?
Why didn’t we call the function f using (*f)(x) in the second_derivative function?
=======
Since second_derivative takes a pointer to a function as parameter, why didn’t we pass the address of the function, using second_derivative(&f_1, 1)? Why didn’t we call the function f using (*f)(x) in the second_derivative function?
>>>>>>> master

The reason is that a function name is already treated by the compiler as a pointer to the function code, to make the program more readable.
There is some flexibility in the syntax though, and you could also have used the following syntax for the calculation of the second derivative:

d2fdx2 = ((*f)(x-h) - 2 * (*f)(x) + (*f)(x+h)) / (h*h);

and for the function call:

second_derivative(&f_1, 1)

but this is less readable.
Feel free to try it.

Comment: Note that we used again the printf function to display the output of the calculation.
The expression %f indicates that we want to insert there a float number.
All the parameters to be inserted in the output are additional parameters to the printf function.
Printf is a very powerful function to produce text output.
Feel free to explore further the range of printf formatting options [https://www.cprogramming.com/tutorial/printf-format-strings.html].

Task

Start a new project with the code above, add a function called first_derivative
to calculate the first derivative of a function using the approach above,
and print both the first and second derivative of \(f(x)=x^2\) for \(x=2\).

\[\frac{df}{dx} = \frac{f(x+h) - f(x-h)}{2h}\]

Note that this requires you to be able to read the text output
as presented in the debugging section. If you can’t get the text output to work at this stage,
just think about what you would do but don’t worry too much about executing the code.

 Arrays

Arrays

Declaring arrays and accessing their elements

Arrays in C/C++ are structures containing a set number N of elements of a given type T.
To declare an array a of 10 integers, one would write:

int a[10];

Elements in the array are indexed between 0 and N-1.
Brackets are used to access the content of each element.
Here are two examples:

a[0]=2;
x=a[0]+3;

The whole array can also be initiated at the point of declaration:

int a[5] = {0,1,2,3,4};

In memory, arrays are contiguous sections of memory that are allocated to contain exactly
the amount of data requested.
Because all entries in an array are of the same type (and the same size in memory),
accessing the elements of an array is very fast:
to find the location in memory of the nth element, you add to the address
of the first element n times the size on an element.
To find the location of the next element, simply add the size of the element to the address current element.

If you try to access the content of an array beyond the range allocated,
expect to get random results, or a crash at execution time.

Always double check what you are doing with arrays!

The lack of reproducibility of the errors they generate makes debugging sometimes difficult.

Passing arrays to functions

Because arrays can be large structures, arrays are not passed to functions by being copied.
In fact, the variable a declared above is de facto a pointer.
The expression *a in your code would return the first element of the array.

The following function would for instance set all the elements of an array to zero:

int data[5];

void set_to_zero(int* a, int n)
{
 int i=0;
 while(i<n)
 {
 a[i]=0;
 i=i+1;
 }
}

main()
{
 set_to_zero(data, 5);
}

Example

Study the code below, guess what it would do and try it on your board.

#include "mbed.h"

DigitalOut led1(LED1);
DigitalOut led2(LED2);
DigitalOut led3(LED3);

const int N = 4;
int led_cycle[N]={1,2,3,2};

void select_led(int l)
{
 if (l==1) {
 led1 = true;
 led2 = false;
 led3 = false;
 }
 else if (l==2) {
 led1 = false;
 led2 = true;
 led3 = false;
 }
 else if (l==3) {
 led1 = false;
 led2 = false;
 led3 = true;
 }
}

int main() {
 int t=0;
 while(true) {
 select_led(led_cycle[t]);
 wait(0.5);
 t=(t+1)%N;
 }
}

Task

Change the code to repeat the sequence {Red, Blue, Red, Green, Blue, Green}.

 Optional - Dynamic memory allocation

Optional - Dynamic memory allocation

This section of the tutorial is useful for the second variant of the activity.
It presents more advanced features of memory management and data manipulation
using pointers.

Memory allocation during program execution

In C and C++ we can request memory from the system.
This is achieved using the functions malloc, realloc and free.
The function malloc (memory allocation) takes as input the size in bytes you wish to allocate in memory and returns a pointer of type void * which points to the first byte of memory:

void *p = malloc(10); // Allocates ten bytes; p points to the first byte

If the memory allocation request would fail (for instance, due to no memory being available), then the pointer p is set to NULL.
It is good practice to check that the returned pointer is not NULL to verify that the memory allocation indeed succeeded.

Memory reallocation

If we already have some memory allocated, then we can grow it with the function realloc (reallocate).
realloc takes as input a pointer to the first byte of an existing memory allocation and a desired new size of this memory allocation and returns a pointer of type void * which points to the first byte of the new memory allocation:

void *np = realloc(p, 20);

The above function call takes our old memory allocation pointed to by the pointer p and request its new size to be 20 bytes.
The new pointer np points to the first byte of this new memory allocation.
The old content is preserved in the new memory allocation (up to the new size of the new memory allocation).
Note that the old pointer p now points to an invalid memory area and is useless.
This pointer is often set to NULL to signal that it does no longer point to anything useful:

p = NULL;

This is known as a null-pointer. If p was not set to NULL it would be known as a dangling pointer.
These are very dangerous as any attempt to dereference them or use them in any other way results in undefined behaviour (possibly a crash, such as a segmentation fault).

Freeing allocated memory

When we are done using the memory we need to return it to the system.
Failing to do so means we have introduced a memory leak.
To free the new pointer np we use the function free and then set the pointer to NULL:

free(np);
np = NULL;

Note that only dynamically allocated memory can be modified with realloc.
The functions malloc, realloc and free are all designed to work with dynamically allocated memory.
Memory allocations you did not create must not be passed to realloc or free as this results in undefined behaviour.

Checking successful memory allocation

realloc can fail to reallocate memory, for example due to no memory being available.
It is good practice to therefore verify that the returned pointer is not NULL.
If realloc fails then the original pointer still points to a valid memory allocation and will need to be freed manually.
A common pattern is therefore as follows:

void *np = realloc(p, 20);
if (np == NULL) {
 free(p);
 // Insert code to handle memory allocation failure...
}

To use memory allocation in practice, it is useful to transform the pointer of type void * to something more useful.
For example, if we want to allocate memory for storing integers then we would like the pointer to be of type int *.
We would also like the memory to be allocated so that a particular number of integers fit within the allocated memory area.

Therefore, in practice, to allocate memory for 8 integers we would write:

int *p = (int *)malloc(sizeof(int)*8);

The sizeof operator returns the size of type int (4 bytes on your Mbed device), which we then multiply by 8 to get the total number of bytes we need to allocate from the system.

The (int *) command before malloc is known as casting.
Just like in a theatre play, where an actor can be recast into many roles, a return value or variable can be recast into a different type.
The casting operator changes the return type of malloc from void * (a pointer to any type) to int * (a pointer to an integer).

Having allocated the memory and cast the returned pointer to a pointer of type int *, we can now read and write to the memory area by dereferencing the pointer and using pointer arithmetic:

int *xp = p;
*xp = 16; Set first integer in the memory area to 16
xp++; // Proceed to the next integer in the allocated memory area
*xp = 32; // Set the second integer in the memory area to 32

We can also use array operations on our newly allocated memory area, as arrays in C and C++ are essentially the same as allocated memory areas with a fixed type (note however that pointers to arrays cannot be modified by calling malloc, realloc and free as they are not dynamically allocated by the system):

printf("First integer: %d"\r\n", p[0]);
printf("Second integer: %d"\r\n", p[1]);

Here is a complete program that demonstrates the above concepts:

#include "mbed.h"

int main()
{
 int *p = (int *)malloc(sizeof(int)*4);
 int *xp = p;
 *xp = 2;
 xp++;
 *xp = 4;
 xp++;
 *xp = 8;
 xp++;
 *xp = 16;

 for (int i = 0; i < 4; i++) {
 printf("[%d]: %d\r\n", i, p[i]);
 }

 int *np = (int *)realloc(p, sizeof(int)*16);
 if (np == NULL) {
 free(p);
 printf("Memory allocation failure!\r\n");
 }
 else {
 for (int i = 4; i < 16; i++) {
 np[i] = 255;
 }
 for (int i = 0; i < 16; i++) {
 printf("[%d]: %d\r\n", i, np[i]);
 }
 free(np);
 }
}

 Interrupts

Interrupts

LED toggle

Let’s look at one of the previous tutorial’s examples:

#include "mbed.h"

DigitalIn button(USER_BUTTON);
DigitalOut led2(LED2);

int main()
{
 led2=0;
 while(true)
 {
 if (button == 1)
 led2 = true;
 else led2 = false;
 wait(0.02);
 }
}

What if we would like now to toggle the state of the LED each time we
press the button: if the LED is off, pressing the button turns it on,
but if the LED is on, pressing the button turns it off.

Instinctively one would want to write the code below:

#include "mbed.h"

DigitalIn button(USER_BUTTON);
DigitalOut led1(LED1);

int main()
{
 led1=0;
 while(true)
 {
 if (button == 1)
 led1 = ! led1;
 // The symbol ! is the logical NOT
 wait(0.02);
 }
}

But this doesn’t really work.
Try it out, and try to find out why.

The problem is that the state of the LED keeps alternating as long as
the button is pressed. What we need to capture is not the state of the
button, but a particular
event: the change of state of the button when it is pressed.

How to solve this problem?

You could increase the duration of the wait, hoping that the user would
release the button by the time it ends.
But then you might miss the input all together.

One could monitor carefully the state of the button, and
switch colour when the state changes.
It would be manageable for such a simple task, but hardly scalable for
complex interactions.
Luckily, micro-controllers have
mechanisms to help you do this, either at the hardware level, or at a
low software level (kernel), such that the user doesn’t need to worry
about it.

Pin interrupts

Let’s look at the code:

#include "mbed.h"

InterruptIn button(USER_BUTTON);

DigitalOut led1(LED1);

// Callback function to associate with the press button event
void onButtonPress()
{
 led1 = !led1;
}

int main()
{ // attach the address of the callback function to the rising edge
 button.rise(onButtonPress);
 while(true)
 { // You could do something useful here
 }
}

As you can see, this looks simple enough!
The line:

InterruptIn button(USER_BUTTON);

creates an object of type InterruptIn that gives you a handle to
monitor events on the pin USER_BUTTON.

The line:

button.rise(onButtonPress);

assigns a particular function with the “rise” event on the pin, which
corresponds here to the button being pressed.
It may appears slightly counter intuitive that the event is called
rise when you are pushing the button down… but this refers to the
fact that the input (voltage) on the corresponding pin is transitioning
from O to 1 (Vcc).

The function onButtonPress is called a callback function.
It doesn’t take any parameter, and doesn’t return anything either.
But it changes the state of the LED when the button is pressed.

Try the code and see what happens.

You will find that this somehow works, but it is still slightly random.
This is because the button is not perfect.
When you press it, its state can fluctuate for a short time, a process
called bouncing (https://www.youtube.com/embed/hAVQpKVck9s).

 Interrupts (continued)

Interrupts (continued)

LED toggle 2.0

Let’s assume that we want to toggle the state LED1 with the push button,
while the microcontroller is busy doing something very important,
such as monitoring the temperature of a nuclear plant.
To illustrate the progress of this other important task with the hardware present on the board,
we will simply get the micro-controller to flash another LED,
and assume that it is important to do it in a very regular manner.

We could start with the following code:

#include "mbed.h"

InterruptIn button(USER_BUTTON);

DigitalOut led1(LED1);
DigitalOut led3(LED3);

void onButtonPress()
{
 led1 = !led1;
 wait_us(300000);
}

int main()
{
 button.rise(onButtonPress);
 while(true)
 { // This is where important calculations are made...
 led3 = !led3;
 wait(0.1);
 }
}

Try the code. LED3 should blink, and the button toggle the state of LED1.
So all seems to work. But…

Callback functions need to be small

Focus now on what happens to the task running in the main function loop, flashing periodically the LED 3.
This loop stops for a little while when the button is pressed,
i.e. when the micro-controller is running the wait statement in the callback function.
Although we need this time delay to prevent bouncing, this also prevents the potentially important code running in the main function to be executed properly.
Large callback functions would also block other interrupts that may be required to handle additional events in a more
complex application. For this reason, it is not appropriate to include time consumming code in a callback function.

It is a general rule to spend as little time as possible in interrupts. Commands such as wait, printf and communications with other ports including Serial or I2C, may cause your micro-controller to not behave properly. Allocating and reallocating memory should also be avoided within a callback function. The compiler may even refuse to compile a code that includes such time consumming tasks in the callback functions.

What if you really would like to excute longer tasks in an interrupt? You will need to think about alternative ways to execute the time consuming tasks outside of the interrupt. For instance, you could introduce a global boolean variable that the interrupt sets to a particular value to indicate the interrupt code was executed. The main function loop may then monitor this variable and execute the relevant code when appropriate.

Back to our LED toggle example…
The wait statement is only here to prevent the button to trigger multiple
interrupts when pressed.
We could do this differently: get the callback function to deactivate the
button interrupt for a short time, and then call another function later on to turn it back on again.
During this time interval, we want of course the main function to continue its
important job of flashing the LED.

We could deactivate an interrupt with the following statement:

button.rise(NULL);

NULL is a generic C/C++ constant.
When a pointer value is NULL, it indicates that the pointer points to nothing.
The code line above therefore replaces the address of the callback function with a value
that unambiguously indicates that there is no call-back function to call.

But how to reattach the interrupt to the callback function after a while,
without using a wait statement?
Time to talk about timers and time interrupts.

Time interrupts

Time interrupts allows us to trigger a callback function after a given
amount of time.
Two main methods are available with mbed:

	Timeout if a callback function needs to be called only once after a time delay,

	Ticker if the callback function needs to be called at regular time intervals.

To use a time interrupt, we need to declare a variable of type Timeout.

Timeout event_timeout;

We can now attach to the object event_timeout a callback function and indicate the time
interval before it is called.
This is done with the following statement:

event_timeout.attach(event_callback_function, time_interval);

where event_callback_function is the name of the function to call,
and time_interval is expressed in seconds.
Time is counted from the moment when the callback function is attached.

Now look at the following code, and try it on your board.

#include "mbed.h"

DigitalOut led1(LED1);
DigitalOut led3(LED3);

InterruptIn button(USER_BUTTON);

Timeout button_debounce_timeout;
float debounce_time_interval = 0.3;

void onButtonStopDebouncing(void);

void onButtonPress(void)
{
 led1 = !led1;
 button.rise(NULL);
 button_debounce_timeout.attach(onButtonStopDebouncing, debounce_time_interval);

}

void onButtonStopDebouncing(void)
{
 button.rise(onButtonPress);
}

int main()
{
 button.rise(onButtonPress);
 while(true)
 { // This is where important calculations are made...
 led3 = !led3;
 wait(0.1);
 }
}

Is the problem fixed?

Comment about function declarations

Note the line:

void onButtonStopDebouncing(void);

It seems that we declare the function twice. Why?

This is because the functions onButtonStopDebouncing and onButtonPress
call each other.

If you remove the first declaration of onButtonStopDebouncing, the compiler will
tell you that onButtonStopDebouncing is not defined in the function onButtonPress,
which is correct, because it is defined further down in the code.
But if you swap the order of the function, then the compiler will complain that
onButtonPress is not declared in onButtonStopDebouncing.

This is why we have to introduce an early declaration of
onButtonStopDebouncing
before we write the code of the function onButtonPress.
It tells the compiler what the function onButtonPress will be (types of parameters and output),
which is all the information it needs to compile onButtonPress properly.

No time to waste!

The solution above is very satisfactory.
We are not wasting time any more in the interrupts.
Having done this, it now looks like the code inside the main function is
not optimal either;
we are still wasting time stuck in a wait statements.
Maybe there is also a better way to blink a LED while allowing the processor
to focus on more important tasks?

Try the code below.
It uses the Ticker class, which calls a callback function at regular time intervals.
Essentially the whole program is now managed by interrupts.
We don’t even need the while loop in the main function.

#include "mbed.h"

DigitalOut led1(LED1);
DigitalOut led3(LED3);

Timeout button_debounce_timeout;
float debounce_time_interval = 0.3;

InterruptIn button(USER_BUTTON);

Ticker cycle_ticker;
float cycle_time_interval = 0.1;

void onButtonStopDebouncing(void);

void onButtonPress(void)
{
 led1 = !led1;
 button.rise(NULL);
 button_debounce_timeout.attach(onButtonStopDebouncing, debounce_time_interval);

}

void onButtonStopDebouncing(void)
{
 button.rise(onButtonPress);
}

void onCycleTicker(void)
{
 led3 = !led3;
}

int main()
{
 button.rise(onButtonPress);
 cycle_ticker.attach(onCycleTicker, cycle_time_interval);

 // Even more important code could be placed here

}

Note that the main function could still access the state of
the button or LEDs at any time.

 Activity 2: I2C bus and sensors

Activity 2: I2C bus and sensors

Learning objectives

In this second activity, you will learn about a very common aspect of device programming: monitoring, logging and transferring sensor data.
It builds up on the skills you learned in the first activity - you will get to use arrays and interrupts again!

This activity will teach you how to interact with a large class of devices communicating with the ubiquitous I2C bus and protocol.
You will also have to polish your soldering skills, and learn how to navigate a complex data-sheet to find the information you need.

Task to complete

The data-sheet of your sensor is available here.

Using the sensor and your micro-controller, you will have to:

	record a temperature value every second in an array that will contain the last minute of data (older data is replaced by new data once the array is full). An timer interrupt must be used to trigger the recording of the value.

	if the temperature goes above a threshold value of 28 degree Celsius, get the temperature sensor to trigger an interrupt that will get the LEDs on the microcontroller to flash a visual alarm signal (for you to imagine), stop the recording, and transmit the last minute of data to your computer by USB serial communication. Values should be transmitted as text (i.e. printed on the serial port), one value per line. The alarm signal should continue until the micro-controller is rebooted.

	optional: if you are keen, you may try to capture and plot the temperature data on your computer using a python script.

What you may need to learn

To complete the task, you may need to learn the following elements

	What are I2C devices and how to communicate with them?

	Soldering and testing your sensor.

	Configuring the sensor using its internal registers

	Responding to hardware interrupts from the sensor

Before getting started with the main task, you are invited to
learn about the prerequisites mentioned above.
Please take them in the right order.
This should give you the background knowledge needed to tackle the
activity.
It may take you 2-3 hours to go through it.

Contents:

	I2C bus and devices
	What is I2C?

	Connecting an I2C device to your microcontroller

	The data sheet of an I2C device

	Soldering
	General information about soldering

	DIY in the EIETL

	The Science of soldering

	Connecting and testing the device
	Connecting the device

	Testing that the device is able to communicate and check its address

	Getting your first temperature measurements

	I2C communication with the LM75 sensor
	Device registers

	Reading and writing on the registers

	I2C library functions

	Converting the raw data into a temperature

	LM75 sensor and interrupts
	Hardware interrupt

 I2C bus and devices

I2C bus and devices

What is I2C?

I2C is probably the most common protocol used to exchange information between microcontrollers and sensors, displays or actuators.
I2C is for instance the protocol used under the hood during IDP to link your different boards together.

In this section, you will find a brief introduction to I2C, with probably just enough information to get you started.
Not everything will be crystal clear, but hopefully most of the relevant sections of the examples code will make sense, and you will manage to modify them to get them to do what you want.

Start with the following intro to I2C, from NXP, the company who developed it a while ago, and also the manufacturer of the sensor you will use (https://www.youtube.com/embed/qeJN_80CiMU).

 Soldering

Soldering

You need to solder the header pins to the breadboard, and set the address of your device by soldering each pin A0-A2 to ground (or VCC if you would like to use a different address).

[image:]

Soldering is not difficult, but it is nonetheless a basic skill to learn.
In this section, you will find various videos and links to get you started with soldering if you are not familiar with it already.

General information about soldering

Here is a good introductory video (https://www.youtube.com/embed/f95i88OSWB4), and a comic that will teach you what you need to get started.

 Connecting and testing the device

Connecting and testing the device

Connecting the device

You were previously asked to identify the default I2C pins on your micro-controller, called I2C1_SCL and I2C1_SDA in the pin layout; they are names D14 and D15 on the board, on the top-right section of the board.

While your board is disconnected from the computer, use the male end of the jumper wires to connect VCC to the 3.3V pin of the board, and GND to GND.
Then connect SDA and SCL to the pins D14 and D15, respectively, in order to use the default I2C pins.

Testing that the device is able to communicate and check its address

The code below will help you test communications with your device.
It scans all I2C addresses on the bus connected to the default I2C pins.
For each address, it tries to read something.
If it manages to find a device, it returns the address on the serial port so that you can catch it on your terminal.
It also uses led flashes to communicate visually the address.

Task

Paste the code below in a new project on the mbed compiler. Compile it and place it on your board. Check the that device address returned matches to address set to the device after soldering the pads.

#include "mbed.h"

// Create an I2C object on the defeault pins D15 and D14
I2C i2c(I2C_SDA, I2C_SCL);
// There are other pins that can be used for I2C the above is the default bus
// See the board pinout on the mbed webpage for more details.

// Use the built in serial bridge to output
Serial pc(USBTX, USBRX);

// Some flashy lights
DigitalOut green(LED1);
DigitalOut blue(LED2);
DigitalOut red(LED3);

// Create a timer so we can time the bus scan
Timer t;

// Buffer for read data
char read_data[2];

// A variable for counting
unsigned int i=0;

// For recording the address of the last device found
unsigned int address=0;

int main()
{
 green=0;
 blue=0;

 // Make sure you set your serial terminal to match this
 pc.baud(9600);

 // Most I2C devices can cope with 400 kHz bus speed.
 // If you have any problems reduce it to 100 kHz.
 // Try changing the I2C speed and seeing what the effect on the speed of the program is.

 i2c.frequency(400000);
 pc.printf("Starting Bus Scan....\r\n");

 // Reset and start timer
 t.reset();
 t.start();

 // Address '0' is all call and it is undefined how this would work
 // so we run from address 1 to 127

 for(i = 1; i < 128 ; i++)

 {
 // Read one byte from whatever the default read register is from every I2C address.
 // i2c.read returns the I2C ACK bit sent by the slave, if anyone answered the call:
 // 0 on success (ack), non-0 on failure (nack)

 // Note that while I2C addresses are from 1-127 we need to left-shift one bit
 // as the address sent on the I2C bus is 8bits
 // with the lowest but indicating if this is a write or read transaction.
 // The operation i<<1 does the bit shifting.

 if(i2c.read(i<<1, read_data, 1)==0)
 {

 // Print the address at which we found a device as a hex and as a decimal number
 pc.printf ("I2C device found at address Hex: %x Decimal: %d\r\n",i,i);

 // If we find one device at least light the green LED and save its address
 green=1;
 address=i;
 }
 // Flash the blue LED to show we are scanning - only slow if no devices connected
 blue=!blue;
 }

 // Stop the timer and report time to scan
 t.stop();
 pc.printf("Bus scanned in %d ms\r\n",t.read_ms());

 // If device not found flash both red & blue LEDs
 if (address==0)
 {
 red=0;green=0;blue=1;
 while(1)
 {
 red=!red;
 blue=!blue;
 wait(0.25);
 }
 }

 // If we find at least one device
 // Flash address using LEDs:
 // Red flashes first digit and blue second

 red=0; blue=0;

 while(1)
 {
 wait(2);
 for (i=0;i<(address/16);i++)
 {
 wait(0.25);
 red=1;
 wait(0.25);
 red=0;
 }
 wait(0.5);
 for (i=0;i<(address%16);i++)
 {
 wait(0.25);
 blue=1;
 wait(0.25);
 blue=0;
 }
 }
}

Getting your first temperature measurements

Task

Start a new project, and select the basic template “mbed OS Blinky LED Hello World”. Replace the content of main.cpp with the code below.
Compile it and try it on your board.
Hold the sensor between your fingers, and monitor the evolution of the temperature.

You will need to catch the serial output to read the temperature, as explained in the corresponding tutorial section:
Using the serial port to monitor and debug programs

Use this code as it is, without necessarily trying to understand it at this point.
The next section will describe in detail how to communicate with the sensor and extract relevant information from the data sheet, if you are not familiar with this yet.

#include "mbed.h"

#define LM75_REG_TEMP (0x00) // Temperature Register
#define LM75_REG_CONF (0x01) // Configuration Register
#define LM75_ADDR (0x90) // LM75 address

I2C i2c(I2C_SDA, I2C_SCL);

DigitalOut myled(LED1);

Serial pc(SERIAL_TX, SERIAL_RX);

volatile char TempCelsiusDisplay[] = "+abc.d C";

int main()
{

 char data_write[2];
 char data_read[2];

 /* Configure the Temperature sensor device STLM75:
 - Thermostat mode Interrupt
 - Fault tolerance: 0
 */
 data_write[0] = LM75_REG_CONF;
 data_write[1] = 0x02;
 int status = i2c.write(LM75_ADDR, data_write, 2, 0);
 if (status != 0) { // Error
 while (1) {
 myled = !myled;
 wait(0.2);
 }
 }

 while (1) {
 // Read temperature register
 data_write[0] = LM75_REG_TEMP;
 i2c.write(LM75_ADDR, data_write, 1, 1); // no stop
 i2c.read(LM75_ADDR, data_read, 2, 0);

 // Calculate temperature value in Celcius
 int tempval = (int)((int)data_read[0] << 8) | data_read[1];
 tempval >>= 7;
 if (tempval <= 256) {
 TempCelsiusDisplay[0] = '+';
 } else {
 TempCelsiusDisplay[0] = '-';
 tempval = 512 - tempval;
 }

 // Decimal part (0.5°C precision)
 if (tempval & 0x01) {
 TempCelsiusDisplay[5] = 0x05 + 0x30;
 } else {
 TempCelsiusDisplay[5] = 0x00 + 0x30;
 }

 // Integer part
 tempval >>= 1;
 TempCelsiusDisplay[1] = (tempval / 100) + 0x30;
 TempCelsiusDisplay[2] = ((tempval % 100) / 10) + 0x30;
 TempCelsiusDisplay[3] = ((tempval % 100) % 10) + 0x30;

 // Display result
 pc.printf("temp = %s\n", TempCelsiusDisplay);
 myled = !myled;
 wait(1.0);
 }

}

 I2C communication with the LM75 sensor

I2C communication with the LM75 sensor

In this tutorial, we assume that the device is connected and returns already a meaningful temperature, as introduced in the previous section.
We will in particular analyse in detail the sample code providing temperature measurements:
Getting your first temperature measurements

We will provide more details about how the device is configured, linking the code with the relevant sections of the datasheet.

Most of the information provided here is based on the section 7 of the datasheet. Please glance through it, and make sure to have it visible while reading this page.

Device registers

Section 7.4 of the datasheet lists the four data registers present in the sensor (see table 5 in datasheet).
The configuration register controls the different modes of operation of the device; you can read or write on it, although you would most likely simply write on it to set the desired behaviour of the sensor.
The temp register contains the last temperature reading; it is read only, as expected.
The other two registers contain the information needed to control the threshold temperatures, and will be further discussed in the next section of the tutorial.

All interactions with the device involve writing and reading the content of these registers, so this is what we will look at next.

Reading and writing on the registers

Each register has an address. There is a special register in the device called pointer register that sets which data register will be involved in the following reading or writing operation.
We do not need to worry too much about the details, as communications will be handled by special functions in the mbed I2C library.
But it is important to understand the sequence of typical I2C communications to be able to use properly these high level functions.

A typical sequence to write in the data registers consists in sending through I2C the device address (7 bits and R/W bit set to W), followed by the value of the pointer register, to indicate which data register we want to write on, and the data to store on this register (see figs 7 and 11 in the datasheet).

Note the the value of the data line (SDA) changes when the clock is low, and must not change when the clock (SCL) is high, as this is when it would be read. However there are two exceptions, which are particular signals to indicate the start and end of communications. To indicate a start of I2C communication, the master would take SDA from high to low while the SCL is high. To indicate the end of the communication, the master would take SDA from low to high while the SCL is high. You will spot these as START and STOP in figs 7 to 12.

Note also that data is only sent one byte at a time, followed by the acknowledgement bit.

To read, a similar process is followed, but two steps are needed (See figs 8 and 11 in the datasheet).
First, we send to the I2C bus the device address (7 bits and R/W bit set to W), followed by the value of the pointer register to indicate what we would want to read.
The microcontroller would then send another start signal.
The next part involves sending again to the I2C bus the device address, but this time with the R/W bit set to R.
The master (microcontroller) would continue to control the clock, but this time the slave (sensor) would control the data line, and send, one byte at a time, the data requested.

I2C library functions

We will use here the write and read functions of the mbed library [https://os.mbed.com/docs/latest/apis/i2c.html] to performs a complete write/read transactions. Both functions handle the start, stop and acknowledgement signals for us.

Write to a slave device

int write (int address, const char *data, int length, bool repeated=false)

Read from a slave device

int read (int address, char *data, int length, bool repeated=false)

Let’s look at what these parameters are, and shed some light on the sample code provided by the arm-mbed environment.

The address:

The mbed documentation says: “address: 8-bit I2C slave address [addr | 0]”.
The address should therefore be passed as 8 bits, including the 7 bits for the address, followed by the read/write bit (as the least significant bit).
The value of this bit actually doesn’t matter as it is overridden by the library.
So how to determine this value from the datasheet?

From section 7.3 of the datasheet, we know that the seven bit address should be 1001000 (the last three bits depends on how you soldered the address pads on the chip). This corresponds to 72.
To turn it into the 8 bits information needed for the mbed library, we need to add an extra bit at the end, that we can set to 0 or 1. Let’s set it to 0: 10010000 = 144 in base 10, or 90 in hexadecimal. Hexadecimal numbers are typed with the prefix 0x, for instance 0x90 would be equivalent to 144. Hexadecimal numbers are commonly used to represent integer data covering 1 byte (2 hexadecimal digits) or 2 bytes (4 hexadecimal digits).

This is why in the code the address is defined as:

#define LM75_ADDR (0x90) // LM75 address

The data buffer:

Whether we need to write or read, we need a bit of memory to handle this information.
A byte array of the right size is therefore needed.

	To control the config register, we need two bytes, one to store the register pointer, and one of the register value.

	To write on any of the three temperature registers, we need three bytes, one for the register pointer, and two for the temperature value.

	To read any of the three temperature registers, we need to write one byte for the register pointer, and then read two for the temperature value.

The following lines in the sample code define the relevant buffers:

char data_write[2];
char data_read[2];

The buffers then need to be manipulated to contain the relevant information.
This would set the value of the configuration buffer:

#define LM75_REG_CONF (0x01) // Configuration Register

data_write[0] = LM75_REG_CONF;
data_write[1] = 0x02;

Repeated start:

By default, the read and write commands would complete the transaction with the STOP signal (repeated=false).
See for instance:

int status = i2c.write(LM75_ADDR, data_write, 2, 0);

However, to read data, we need two steps: first, we need to indicate, with a write command, which register we want to read; next, we need to read the register we previously expressed interest for.
The write call should in this case be sent with the last parameter (repeated) set to true or 1.

data_write[0] = LM75_REG_TEMP;
i2c.write(LM75_ADDR, data_write, 1, 1); // no stop
i2c.read(LM75_ADDR, data_read, 2, 0);

Returned values:

0 on success (ACK), non-0 on failure (NACK).
The sample code uses this returned value to signal any error in the communication:

if (status != 0) { // Error
 while (1) {
 myled = !myled;
 wait(0.2);
 }
}

Converting the raw data into a temperature

Transforming data buffers into floating point temperature, and vice-versa, is a tricky task.
You may not need to create such code, and could reuse the relevant sections of the examples code provided, but it helps to understand how they work.

The way temperatures are stored on the registers is defined in section 7.4.3 and 7.4.4.
Have a look at it first.
This is the content of the buffer data_read at the start:

 	data_read[0]
 	data_read[1]

 	D10
 	D9
 	D8
 	D7
 	D6
 	D5
 	D4
 	D3
 	D2
 	D1
 	D0
 	0
 	0
 	0
 	0
 	0

These 11 bits represents the whole temperature range, with a 0.125 degree Celsius precision, i.e. 1/8 of a degree.
The binary value of each bit, including sign, is detailed in the table below:

 	D10
 	D9
 	D8
 	D7
 	D6
 	D5
 	D4
 	D3
 	D2
 	D1
 	D0

 	Sign
 	64
 	32
 	16
 	8
 	4
 	2
 	1
 	1/2
 	1/4
 	1/8

The sign convention follows an approach called two’s complement [https://en.wikipedia.org/wiki/Two%27s_complement].
Table 10 of the datasheet shows examples of temperature values and their equivalent representation in bits.

The gist of what follows consists in manipulating the bit array to extract the exact value of the temperature.
You may want to learn a bit about bitwise operations in C++ [https://en.wikipedia.org/wiki/Bitwise_operations_in_C] if you never encountered this before.

The mbed example code for the LM75 sensor does something really complicated and long winded to build the temperature as a text.
The appendix below explains what it does, but we are going to explain here a much simpler method.

The representation we get from the sensor, stored in data_read, is not too far from the representation of a 16-bit signed integer:

 	
 	Most significant byte
 	Least significant byte

 	bit value for 16 bit int
 	Sign
 	16384
 	8192
 	4096
 	2048
 	1024
 	512
 	256
 	128
 	64
 	32
 	16
 	8
 	4
 	2
 	1

 	bit value for sensor data
 	Sign
 	64
 	32
 	16
 	8
 	4
 	2
 	1
 	1/2
 	1/4
 	1/8
 	0
 	0
 	0
 	0
 	0

If we were to paste the 16 bits of data_read in a 16-bit integer, we would get a number that is the temperature scaled by a factor 256, since the bit corresponding to 1 celsius in the sensor data corresponds to 256 in the 16-bit int.
This may be a good strategy to follow.

To use precisely defined integer types, we will use the header file stdint.h [https://en.wikibooks.org/wiki/C_Programming/stdint.h]:

#include "stdint.h" //This allow the use of integers of a known width

To declare a 16-bit signed int called i16, we would type:

int16_t i16;

How to fill i16 with the relevant bits stored in data_read?
This is where bitwise operations are handy!

i16 = data_read[0];

would create this :

 	
 	data_read[0]

 	0
 	0
 	0
 	0
 	0
 	0
 	0
 	0

 	D10
 	D9
 	D8
 	D7
 	D6
 	D5
 	D4
 	D3

To place the bits D10 - D3 at the right place, we need to shift them bitwise using the left-shift operator “<<”:

int16_t i16 = data_read[0] << 8

 	data_read[0]
 	

 	D10
 	D9
 	D8
 	D7
 	D6
 	D5
 	D4
 	D3

 	0
 	0
 	0
 	0
 	0
 	0
 	0
 	0

To complete the number, we need to add the bits D2-D0 contained in data_read[1].
This is done using the bitwise OR operator, “|”, between data_read[0] << 8 and data_read[1].

int16_t i16 = (data_read[0] << 8) | data_read[1];

 	data_read[0]
 	data_read[1]

 	D10
 	D9
 	D8
 	D7
 	D6
 	D5
 	D4
 	D3

 	D2
 	D1
 	D0
 	0
 	0
 	0
 	0
 	0

To get the temperature in degree Celsius, we need to divide this number by 256, making sure the output is a floating point number.
To indicate to the compiler that we want the floating point division, we write 256 with a decimal point, 256.0.
The conversion code therefore becomes:

int16_t i16 = (data_read[0] << 8) | data_read[1];
float temp = i16 / 256.0;

Overall, the code with the new conversion function would be:

#include "mbed.h"
#include "stdint.h" //This allow the use of integers of a known width

#define LM75_REG_TEMP (0x00) // Temperature Register
#define LM75_REG_CONF (0x01) // Configuration Register
#define LM75_ADDR (0x90) // LM75 address

I2C i2c(I2C_SDA, I2C_SCL);

DigitalOut myled(LED1);

Serial pc(SERIAL_TX, SERIAL_RX);

int main()
{

 char data_write[2];
 char data_read[2];

 /* Configure the Temperature sensor device STLM75:
 - Thermostat mode Interrupt
 - Fault tolerance: 0
 */
 data_write[0] = LM75_REG_CONF;
 data_write[1] = 0x02;
 int status = i2c.write(LM75_ADDR, data_write, 2, 0);
 if (status != 0) { // Error
 while (1)
 {
 myled = !myled;
 wait(0.2);
 }
 }

 while (1)
 {
 // Read temperature register
 data_write[0] = LM75_REG_TEMP;
 i2c.write(LM75_ADDR, data_write, 1, 1); // no stop
 i2c.read(LM75_ADDR, data_read, 2, 0);

 // Calculate temperature value in Celcius
 int16_t i16 = (data_read[0] << 8) | data_read[1];
 // Read data as twos complement integer so sign is correct
 float temp = i16 / 256.0;

 // Display result
 pc.printf("Temperature = %.3f\r\n",temp);
 myled = !myled;
 wait(1.0);
 }

}

Comments regarding the sample code provided through the mbed compiler

Feel free at this stage to look again at the sample code provided with the mbed compiler:
Getting your first temperature measurements

You will recognise similar operations to transform the buffer into a number.
However, because the code uses int (32 bits by default) instead of int16_t, the sign bit is not at the right position, and the conversion has to be done carefully as a result.

Moreover, the mbed code only uses 9 bits on the data, as the shift “tempval >>= 7” destroys the values of D1 and D0, hence the 0.5 degree precision, most likely to ensure compatibility with older sensors operating with 9-bit precision.

Note that the mbed code creates the string array digit by digit rather than using the printf function.
A string is an array of bytes representing text characters according to what is called the ascii table [https://www.asciitable.com/].
The characters “0” to “9” corresponds to values 30 to 39 in hexadecimal representation.
So “k + 0x30” represents the ascii value of the character corresponding to the digit value k, with 0<=k<=9.

We encourage you to use the method explained above (using the 16-bit integer) to record and display temperature data.

In the next (and final) section, you will be given a code to test the interrupt mode of the sensor.

 LM75 sensor and interrupts

LM75 sensor and interrupts

Hardware interrupt

Read section 7.1 of the datasheet.
The OS pin of the sensor is useful to let the device monitor temperature in the background, and send a signal when the temperature exceeds a threshold, Tos.
A hysteresis temperature, Thyst, is also defined to avoid noisy signal in the interrupt pin.
Fig 6 of the datasheet shows how the OS pin would be controlled for a certain temperature input.
There are two different modes of operation for the interrupt in the device, the interrupt mode and the comparator mode. They are selected using the second bit (B1) of the Config register.

The code below illustrates the use of interrupts.
We use here the interrupt mode, but the same task can be achieved with the comparator mode.

Start a new project, and paste this code in.
The sensor needs to be connected as previously, with in addition the OS pin linked to the pin D7 of the microcontroller.

The code contains a couple of new elements:

	the address of the registers TOS and THYST are introduced, as well as some code to set the interrupt and hysteresis temperatures. The code essentially does the opposite of what we did to read the temperature. There are only 9 meaningful bits for these registers; the operation ” & 0xFF80” is a bitwise AND operation on the 16-bit of data and the binary number “1111111110000000”; it essentially makes sure that we set to 0 the 7 least significant bits of the i16 variable.

	The interrupt pin is active when its value is low, so we should trigger the interrupt when OS goes from high to low. We therefore set the interrupt using the function “fall” rather than “rise” as introduced in the previous activity.

When the code is running, you should be able to raise the temperature enough with your fingers to trigger the interrupt and turn the blue led on.
As the sensor cools down, as new interrupt is triggered once the temperature goes below 26 degree Celsius, turning the blue led off.
Each time an interrupt is triggered, a red led should also flash on the sensor, indicating the state of the OS pin (led is on when OS is low).

#include "mbed.h"
#include "stdint.h" //This allow the use of integers of a known width
#define LM75_REG_TEMP (0x00) // Temperature Register
#define LM75_REG_CONF (0x01) // Configuration Register
#define LM75_ADDR (0x90) // LM75 address

#define LM75_REG_TOS (0x03) // TOS Register
#define LM75_REG_THYST (0x02) // THYST Register

I2C i2c(I2C_SDA, I2C_SCL);

DigitalOut myled(LED1);
DigitalOut blue(LED2);

InterruptIn lm75_int(D7); // Make sure you have the OS line connected to D7

Serial pc(SERIAL_TX, SERIAL_RX);

int16_t i16; // This variable needs to be 16 bits wide for the TOS and THYST conversion to work - can you see why?

void blue_flip()
{
 blue=!blue;
 // The instruction below may create problems on the latest mbed compilers.
 // Avoid using printf in interrupts anyway as it takes too long to execute.
 // pc.printf("Interrupt triggered!\r\n");
}

int main()
{
 char data_write[3];
 char data_read[3];

 /* Configure the Temperature sensor device STLM75:
 - Thermostat mode Interrupt
 - Fault tolerance: 0
 - Interrupt mode means that the line will trigger when you exceed TOS and stay triggered until a register is read - see data sheet
 */
 data_write[0] = LM75_REG_CONF;
 data_write[1] = 0x02;
 int status = i2c.write(LM75_ADDR, data_write, 2, 0);
 if (status != 0)
 { // Error
 while (1)
 {
 myled = !myled;
 wait(0.2);
 }
 }

 float tos=28; // TOS temperature
 float thyst=26; // THYST tempertuare

 // This section of code sets the TOS register
 data_write[0]=LM75_REG_TOS;
 i16 = (int16_t)(tos*256) & 0xFF80;
 data_write[1]=(i16 >> 8) & 0xff;
 data_write[2]=i16 & 0xff;
 i2c.write(LM75_ADDR, data_write, 3, 0);

 //This section of codes set the THYST register
 data_write[0]=LM75_REG_THYST;
 i16 = (int16_t)(thyst*256) & 0xFF80;
 data_write[1]=(i16 >> 8) & 0xff;
 data_write[2]=i16 & 0xff;
 i2c.write(LM75_ADDR, data_write, 3, 0);

 // This line attaches the interrupt.
 // The interrupt line is active low so we trigger on a falling edge
 lm75_int.fall(&blue_flip);

 while (1)
 {
 // Read temperature register
 data_write[0] = LM75_REG_TEMP;
 i2c.write(LM75_ADDR, data_write, 1, 1); // no stop
 i2c.read(LM75_ADDR, data_read, 2, 0);

 // Calculate temperature value in Celcius
 int16_t i16 = (data_read[0] << 8) | data_read[1];
 // Read data as twos complement integer so sign is correct
 float temp = i16 / 256.0;

 // Display result
 pc.printf("Temperature = %.3f\r\n",temp);
 myled = !myled;
 wait(1.0);
 }

}

Task (optional)

Could you program the same behaviour using the comparator mode of the sensor, instead of the interrupt mode?
Hint: You need to change the value of the configuration register (see section 7.4.2 of the datasheet). The code below would set its relevant bit to select the comparator mode. You will also need to set different behaviours for the rising and falling edges of the interrupt pin.

data_write[0] = LM75_REG_CONF;
data_write[1] = 0x00;
int status = i2c.write(LM75_ADDR, data_write, 2, 0);

 Index

Index

 CUED Part IB Lent Computing Activity

CUED Part IB Lent Computing Activity

These documents for the Part IB Lent Term computing activity and are
displayed at http://cued-partib-device-programming.readthedocs.io.

[image: _images/fe4120f34f832b74ab2ab97a980acd19b95f696a.svg]
	target:

	http://cued-partib-device-programming.readthedocs.io/en/latest/?badge=latest

	alt:

	Documentation Status

 Activity 3: Actuation and feedback

Activity 3: Actuation and feedback

Learning objectives

Microcontrollers do logic and mechanics, but you can’t really get power out of them. In this activity, you will learn how to deliver power to a device attached to the microcontroller, and how to control this power to achieve a certain goal. This will transform the logical/mathematical capabilities of your micro-controller into actions that have effect on the real world.
The activity relies on the skills that you have learned in the previous activities - you will use interrupts, read sensors, and maybe even solder again!

Task to complete

The aim is to implement a simple temperature controller.

Using a temperature sensor attached against one of the sides of a Peltier cell, your task is to keep constant the temperature it measures by transferring heat using the Peltier cell. The target temperature will be set in the code, and possibly changed by the user using the integrated button. The range of target temperatures should be close to ambient temperature (say within 5 degrees) to keep currents low enough.

If you plan primarily to cool down, it may be useful to attach a heat sink on the hot side and the sensor on the other. If you plan to regulate temperatures larger than ambient temperature, do it the other way around. The heat sink helps dissipate the heat transferred on the side we do not wish to regulate, making it easier for the Peltier cell to do its job.

As an extra, you may want to consider ways to change the target temperature through the button, or even a potentiometer if you have one.

What you may need to learn

	Learn about Pulse-Width-Modulation and how to use it to adjust the brightness of a LED.

	Learn what a H-Bridge is and how to use it to adjust the electric power delivered to a device. As an example, you can regulate the speed and direction of a DC motor.

	Learn what a Peltier cell is and how to drive it to transfer heat.

	Learn how to implement a feedback control loop: read sensor, compute the right control action, drive the actuator, and back.

These activities are progressive, and each relies on the former one. Please take them in the right order.

Contents:

	Pulse-Width-Modulation and LED brightness
	What is Pulse-Width-Modulation ?

	The PWM library

	LED brightness through PWM

	H-bridge and power
	What is a H-bridge?

	L298N Driver

	Regulation of the speed and rotation direction of a DC motor

	Peltier cells
	Preparation of a cell

	Constant heat transfer and sensor readings

	Temperature controller
	Feedback control

	Feedback control algorithms

 H-bridge and power

H-bridge and power

What is a H-bridge?

Microcontrollers are logical devices that function with very modest power. They are not very good at driving loads, like actuators, which typically require power at their inputs. The problem can be solved through an interface capable of injecting power to the actuator as a function of the logical signals of the microcontroller. This is the role of a H-bridge.

A H-bridge is a simple device. It is just a switching circuit connected to a large power generator, as shown in the figure below. The four switches S1-S4 route power to the load, represented in the figure by an encircled M (a motor, in this example).

[image: H bridge]
H bridge. Source: Wikipedia

The switches are typically controlled by the microcontroller.

	If S1 and S4 are closed, and S2 and S3 are open, a positive voltage is applied to the left side of the load (the motor spins in one direction).

	If S2 and S3 are closed, and S1 and S4 are open, a positive voltage is applied to the right side of the load (the motor spins in the other direction).

	If S1 and S3 are closed, and S2 and S4 are open, the same voltage is applied to both sides of the load (the motor does not want to move). The same happens if S2 and S4 are closed, and S1 and S3 are open.

	If either S1 and S2 are closed, or S3 and S4 are closed, the generator is short circuited and terrible things will happen…

So, by using a H-bridge, you can apply a voltage to your load without strong restrictions on the amount of power. Selecting the configuration of the four switches S1-S4 (ON/OFF) you can also decide the direction of the driving voltage to the load. Finally, to modulate the intensity of the voltage, just use PWM, opening and closing S1-S4 at high frequency to generate a suitable average voltage.

L298N Driver

The L298N driver is a dual H-bridge that can be used with voltages between 3.2 V to 40 V and can supply up to 2 A per bridge. To know more about this driver, consults the relevant data-sheet from manufacturers of the driver integrated circuit and the manufacturer of the breakout board.

The image below, from the breakout board datasheet, shows the different inputs and outputs of the circuit.

[image: L298N]

L298N H bridge connections.

	Connect an external DC power supply to the ground and +12V Power pins terminal. The power voltage doesn’t need to be 12 V. Any value from 3.2 V to 40 V would work. This power must not be taken from the microcontroller itself. Pay attention to NOT reverse polarity.

	Here, we will use only one of the two H-bridges. The load will be connected to the Output A terminals.

	
	The pins IN1 and IN2 control the switches of the bridge and should be connected to digital outputs of your microcontroller. They would work with both 3.3 V and 5 V logic.
	
	if IN1 and IN2 are at the same voltage (0 or 3.3 V), then there is no current through the load;

	if IN1 = 1 and IN2 = 0, the current will flow in a certain direction through the load;

	if IN1 = 0 and IN2 = 1, the current will flow in the opposite direction through the load;

	The pin “A Enable” could be either set to 1 permanently using the jumper, or connected to a PWM input to modulate the load. In the example below, we will use PWM so the jumper needs to be removed and safely stored.

	the +5V Power pin is not required here. It may be used to actually power the microcontroller, but we use here the USB connection to the computer to deliver power.

	However, the microcontroller and the L298N H-bridge need to have the same ground. It is therefore important to connect the Power GND terminal of the H-bridge to a GND pin of the microcontroller.

Regulation of the speed and rotation direction of a DC motor

	Connect a small DC motor to the “Output A” terminals.

	Configure the power supply to deliver 5 V and up to 1 A. Connect the (-) voltage output of the power supply to the ground of the H-bridge, and the (+) voltage to the “+12V Power” terminal of the bridge.

	Connect the GND of the microcontroller to the “Power GND” terminal of the bridge. (You can insert two cables if the terminal if needed.)

	Connect IN1 and IN2 to two digital outputs of the microcontroller. The code below uses the pins D8 and D9.

	Connect “A enable” to a PWM enabled pin. The code below uses the pin D11.

#include "mbed.h"

// Pins used for the H-bridge control
PwmOut pwmload(D11);
DigitalOut in_A(D8);
DigitalOut in_B(D9);

// We use the LEDs to communicate the state of the H-bridge
// LED1 (green) when not enabled
// LED2 when in the positive direction
// LED3 when in the negative direction
DigitalOut ledgreen(LED1);
PwmOut pwmblue(LED2);
PwmOut pwmred(LED3);

void setload(float x)
{
 if (x>0)
 { in_A = 1;
 in_B = 0;
 pwmload.write(x);
 pwmred.write(x);
 pwmblue.write(0.0);
 ledgreen = 0;
 }
 else if (x<0)
 { in_A = 0;
 in_B = 1;
 pwmload.write(-x);
 pwmred.write(0.0);
 pwmblue.write(-x);
 ledgreen = 0;
 }
 else
 { in_A = 0;
 in_B = 0;
 pwmload.write(0.0);
 pwmred.write(0.0);
 pwmblue.write(0.0);
 ledgreen = 1;
 }
}

int main()
{
 float load = 0.0;
 for (load = 0; load <=1; load += 0.025)
 {
 setload(load);
 wait(0.1);
 }
 while(true)
 {
 for (load = 1; load >=-1; load -= 0.025)
 {
 setload(load);
 wait(0.1);
 }
 for (load = -1; load <=1; load += 0.025)
 {
 setload(load);
 wait(0.1);
 }
 }

}

Task

Connect properly the bridge to your microcontroller and motor, and test the code above. Modify the code so that the button can be used to alternate between different speeds and directions of the motor.

 Peltier cells

Peltier cells

Preparation of a cell

Peltier cells [https://en.wikipedia.org/wiki/Thermoelectric_cooling] use the Peltier effect [https://en.wikipedia.org/wiki/Thermoelectric_effect#Peltier_effect] to pump heat from one plate to another of the device. The flux of heat is roughly proportional to the current passing through the peltier cell. The image below provides a schematic representation of a Peltier cell.

[image: Peltier cell]

Peltier cell. Source: Wikipedia

One of the two plates of the Peltier cell is engineered to be hot. The other to be cold. Please attach the thermal adhesive on both sides, then attach the heat sink to the cold side. To identify the hot side please refer to the datasheet. For the particular model provided, place the cell on the bench/desk with the black cable on the right/down and red cable on the left/down, then the top plate is the hot plate.

Task

Connect the Peltier cell to the H-bridge output. Set the power supply to 9 V and 1 A max. Reuse the code you wrote in the previous section to test the Peltier cell and make sure that the cold side get cooler, and hot side warmer when the load is positive. You should be able to determine this by carefully touching the surfaces with your fingers. Be careful as it may get hot! If it works the otherway around, either you change your code, or you switch the cable of the Peltier cell.

	Place the Peltier cell on your desk/bench with the heat sink in contact with the bench surface and the hot side exposed to the air. Then place the temperature sensor on the hot side (fix it with standard tape).

[image: Peltier cell]

Peltier bench realization.

Constant heat transfer and sensor readings

The following code drives the Peltier cell with a small voltage and monitors the temperature of the cold side of the Peltier cell by cyclically reading the temperature sensor. Temperature sensor reading is made available to the user through serial.

The code to drive the Peltier cell is similar to the one for LED and motor.
Setting and reading of the temperature sensor is realized through minor adaptations of the code you have developed in Activity 2. In fact, you will need to connect the temperature sensor to the pins D14 and D15 as in Activity 2.

You will need to attach the sensor to one of the surfaces of the Peltier cell. Normal tape should help you do this. Make sure the side of the sensor with the integrated circuit is in contact, and not the other one.

The code uses the Ticker [https://os.mbed.com/docs/mbed-os/v5.13/apis/ticker.html] interface to set up recurring interrupts. Recurrent interrupts allow to read sensors and send information on the serial port at precise time intervals.

#include "mbed.h"
#include "stdint.h"

// Pins used for the H-bridge control
PwmOut pwmload(D11);
DigitalOut in_A(D8);
DigitalOut in_B(D9);

// *** Temperature sensor: pins and variables
#define LM75_REG_TEMP (0x00) // Temperature Register
#define LM75_REG_CONF (0x01) // Configuration Register
#define LM75_ADDR (0x90) // LM75 address
I2C i2c(I2C_SDA, I2C_SCL); //D14 and D15
Ticker dT_input;
volatile int read_input = 0;

// *** Serial communication: variables
Serial pc(SERIAL_TX, SERIAL_RX);
Ticker dT_serial;
volatile int update_serial = 0;

// *** Interrupt functions
void sensing() {
 read_input = 1;
}

void serial_com() {
 update_serial = 1;
}

// *** General functions

void setload(float x)
{
 if (x>0)
 { in_A = 1;
 in_B = 0;
 pwmload.write(x);
 }
 else if (x<0)
 { in_A = 0;
 in_B = 1;
 pwmload.write(-x);
 }
 else
 { in_A = 0;
 in_B = 0;
 pwmload.write(0.0);
 }
}

float read_temperature() {
 // Read temperature register
 char data_write[2];
 char data_read[2];
 data_write[0] = LM75_REG_TEMP;
 i2c.write(LM75_ADDR, data_write, 1, 1); // no stop
 i2c.read(LM75_ADDR, data_read, 2, 0);

 // Calculate temperature value in Celcius
 int16_t i16 = (data_read[0] << 8) | data_read[1];
 // Read data as twos complement integer so sign is correct
 float temperature = i16 / 256.0;
 // Return temperature
 return temperature;
}

int main() {

 //*** temperature sensing configuration
 //Sensor configuration
 char data_write[2];
 data_write[0] = LM75_REG_CONF;
 data_write[1] = 0x02;
 i2c.write(LM75_ADDR, data_write, 2, 0);
 //variables
 float temperature = 0;

 //*** PWM drive configuration
 pwmload.period_us(1000);
 setload(0.2f); // Be careful not to set it too high
 printf("pwm set to %.2f %%\n", pwmload.read());

 //*** Interrupt configuration
 dT_input.attach(sensing, 0.01);
 dT_serial.attach(serial_com, 0.25);

 while(1) {
 if (read_input == 1) {
 read_input = 0;
 temperature = read_temperature();
 }
 if (update_serial == 1) {
 update_serial = 0;
 pc.printf("Pwm set to %.2f, Temperature = %.3f\r\n ",pwmload.read(), temperature);
 }
 }
}

You will notice that serial communication happens at much slower rate than sensor reading. The reason for these differences will be clear later, when we will design a more complex actuation mechanism. The idea is that sensing and communication with the user can occur at different rates. Typically, sensing and actuation need a very fast rate to avoid issues but communication with the user (serial) can be done at a slower rate to save computational resources.

Finally, the while loop constantly monitors the two variables
read_input and update_serial. A sensor read is performed when read_input is detected equal to 1. Consequently, read_input is set to 0, in preparation for the next interrupt. Temperature and PWM status are communicated to the user when update_serial is detected equal to 1. After that, update_serial is set to 0, in preparation for the next interrupt.

Task

Try the code above and monitor the temperature on the sensor. What relationship do you have between the duty cycle of the Peltier cell and the temperature? Make changes to the program and/or you circuit to cool the sensor rather than warm it up.

 Printf

Printf

A brief note on the printf (print formatted) function.

Simple text output

	printf is a built-in function in what is known as the standard library.
	printf (print formatted) takes as input a format string and a series of variables.

The format string tells printf what to print and how it should appear.
A simple example is:

printf("test");

which will print the ASCII characters ‘t’, ‘e’, ‘s’ and ‘t’. The text “test” is shown in the terminal.

If we then call printf again with the same function argument (“test”) we would observe “testtest” in the terminal.
This is why printf format strings often contain control characters such as \n or \r to force a new line.
The backslash indicates to printf that the next character should be interpreted as a control character.
This is why:

printf("test\r\n");
printf("test\r\n");

will result in the text “test” on one line, followed by the text “test” on the next line in the terminal.
The additional two control characters instruct the terminal to perform a carriage return followed by a linefeed.
This moves the cursor to the first position in the next line in the terminal.

Formatted output

printf can also print out the values of variables.
To do this we need to provide printf with both a string and a series of variables we want to print out.
The string is a format string which instructs printf how to arrange the printout to include the values of the variables that have been provided.

printf("x: %d\r\n", x);

sends the string x: %d\r\n to printf.
The %d part in the string is a format instruction to printf.
It means substitute %d for an integer variable.
printf will read the contents of the variable x (which is an int) and splice it into the format string at the location of the formatting instruction.
For instance, if x is equal to 20 then printf will generate the string "x: 20\r\n".

The code below prints out the contents of both x and y:

#include "mbed.h"

int main() {
 int x = 20;
 int y = 40;
 printf("x: %d y: %d\r\n", x, y);
}

Run the code on your Mbed device and ensure the terminal output is as expected. Using printf is very useful for quick debugging as it enables you to print out variable values at specific points in your code.

 Project 1 - Extension

Project 1 - Extension

This section of the activity is optional, and directed towards
students who would like to explore higher levels of control of memory
management with C++.

Aims

	Extend the previous activity to record an sequence of colour of
unspecified length.

In the exercise 1, you had to record a fixed number of colours in a
data structure (array) of fixed size. We would like here to provide
more flexibility to the user by letting them indicate the end of the
recording sequence. The main implication is that we can’t initiate
the array in the same; we need to control its size dynamically.

Learning objectives

	Learn about dynamics memory allocation

	Detect more complex button events - the double click!

Working code for the extension project: code.

 Project 1

Project 1

Aims

Working code for the extension project: code.

 Pulse-Width-Modulation and LED brightness

Pulse-Width-Modulation and LED brightness

What is Pulse-Width-Modulation ?

Pulse-width-modulation (PWM) is probably the most common way to produce an average analog voltage in electrical circuits via fast switching.
The idea is simple: if you switch the voltage of a circuit between ON (Vrefvolts) and OFF (0 volts) sufficiently fast, you will generate an average voltage in the circuit proportional to the ratio between the length of time the circuit was ON and the length of time the circuit was OFF.

Let’s consider a few examples. Take a PWM frequency of 10kHz; this means that the ON/OFF cycle repeats 10000 times a second).

	A 50% duty cycle means that the circuit is ON for half of the cycle and OFF otherwise (first row in the image below). Thus, the generated averaged voltage is about 0.5Vref.

	A 25% duty cycle means that the circuit is ON for a fourth of each cycle and and OFF otherwise (last row in the image below). The generated voltage is about 0.25 Vref.

[image: Duty_cycle_PWM]

PWM. Source: Wikipedia

This technique is so popular that you can find a full page on Wikipedia (https://en.wikipedia.org/wiki/Pulse-width_modulation) dedicated to it and several tutorials available on internet like Arduino [https://www.arduino.cc/en/tutorial/PWM] and Sparkfun [https://learn.sparkfun.com/tutorials/pulse-width-modulation/all]. You may find this video useful:

 Temperature controller

Temperature controller

Feedback control

With a constant duty cycle, the Peltier cell moves heat from the cold side to the hot side. Heat is then slowly removed from the hot side by the heat-sink, and dissipated through convection [https://en.wikipedia.org/wiki/Convection]. For this reason, the cold side temperature of the Peltier cell becomes colder than the room average temperature. Increasing the duty cycle further reduces the cold side temperature. However, you do not have much control on the actual temperature of the cold side. That depends on a number of factors. Even if you spend time to estimate the relationship between duty cycle and cold side temperature (at steady state), that relationship will dependent on the room average temperature, airflow within the heat sink, humidity, and many other factors.

To overcome these limitations and control precisely the cold side temperature you need feedback. Feedback is effective against uncertainties. The idea is simple: if the cold side temperature is above the desidred temperature, then the PWM duty cycle must be increased to remove more heat. If the cold side temperature is below the desired temperature, then the PWM duty cycle must be set to zero to reduce the extraction of heat. This basic feedback [https://en.wikipedia.org/wiki/Control_theory] approach, summarized in the figure below, is extensively used in industry.

[image: Feedback loop]
Feedback loop. Source: Wikipedia

Feedback control algorithms

In our setting, the “system” is the Peltier cell and the “sensor” is the temperature sensor. In principle, the microcontroller can computes the difference between the cold side measured temperature and the desired/reference temperature, and proportionally adjusts the duty cycle to reach the desired temperature. The coefficient of proportionality between the duty cycle of the Peltier cell and the error in temperature is called the gain, and plays a role in the effectiveness of the control system. It would be a good idea to make is a parameter that you can adjust easily in your code.

In the proportional controller, the duty cycle would be = kp*(ref-temperature)`` adjusts the duty cycle proportionally to the difference between the reference temperature ref and the actual measured temperature temperature. The proportional gain kp can be adjusted by the user.

At this point, you should be ready to implement your overall solution for temperature control. You may want to consider what the difference is between small and large proportional gain kp.

The proportional control [https://en.wikipedia.org/wiki/Proportional_control] suggested above is non optimal for temperature control: it works but it is not precise. There is always a small error near the desired temperature. The best approach is the so called proportional + integral control [https://en.wikipedia.org/wiki/PID_controller]. The role of integral control is to estimate the exact amount of energy that the system needs at steady state to keep the temperature at the exact desired value (no small error). If you have mastered this lecture so far and you want to explore a more challanging control algorithm, please read the linked wikipedia page and add an integral component to your proportional controller. A few additional resources can be found here:

PID Cookbook Mbed [https://os.mbed.com/cookbook/PID]

What is a PID Controller? [https://www.youtube.com/watch?v=sFqFrmMJ-sg]

What are PID Tuning Parameters? [https://www.youtube.com/watch?v=1ImhKwpSmuc]

_images/Components.png
A bit of soldering required...

_images/L298N-Module-Pinout.jpg

_images/Peltierelement.png

_images/Duty_Cycle_Examples.png
50% duty cycle

50%
on

50%
off

5%

duty cycle

75%
on

25
off

25%

duty cycle

p5:
on

75%
off

_images/peltier_bench.jpg

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Computing Device Programming Activity

 		
 Introduction

 		
 Device programming activity

 		
 Why such an activity?

 		
 A few words about sponsors

 		
 Tutorial

 		
 Getting started

 		
 What is a microcontroller?

 		
 ARM & mbed microcontrollers

 		
 A first project

 		
 Keep going

 		
 Functions

 		
 Physical input with a push button

 		
 Debugging

 		
 Errors

 		
 Using the serial port to monitor and debug programs

 		
 Serial communication

 		
 Receiving strings from the computer

 		
 Creating a simple python interface

 		
 A more complex example

 		
 Activity 1: Memory and interrupts

 		
 Learning objectives

 		
 Task to complete

 		
 What you may need to learn

 		
 Pointers

 		
 Arrays

 		
 Optional - Dynamic memory allocation

 		
 Interrup