
CUED-Device-Programming
Documentation

Release 1

AJ Kabla, PO Kristensson, J Durrell, F Forni

Dec 05, 2023

CONTENTS:

1 Introduction 3
1.1 Device programming activity . 3

2 Tutorial 5
2.1 Getting started . 5
2.2 Keep going . 9
2.3 Debugging . 11
2.4 Serial communication . 15

3 Activity 1: Memory and interrupts 19
3.1 Learning objectives . 19
3.2 Task to complete . 19
3.3 What you may need to learn . 20

4 Activity 2: I2C bus and sensors 35
4.1 Learning objectives . 35
4.2 Task to complete . 35
4.3 What you may need to learn . 35

i

ii

CUED-Device-Programming Documentation, Release 1

This page contains the online material for the Computing activity on Device Programming, designed at the Engineering
Department of the University of Cambridge.

CONTENTS: 1

CUED-Device-Programming Documentation, Release 1

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

1.1 Device programming activity

1.1.1 Why such an activity?

Across all branches of Engineering, the use of sensor networks and embedded computation has become ubiquitous.
Whether you look at the building industry, transportation or biomedical engineering, networks of interconnected sen-
sors able to process and communicate data are increasingly involved in the control and diagnostic of complex opera-
tions. This technological trend has now reached most corners of not only industrial processes, but also personal life,
encompassed by the fairly generic expression of Internet of Things.

The modern Engineer must therefore embrace this ubiquity, and make sure that whatever their specialisation is, they
master the basic aspects of sensing and communication. This series of practical activities is here to fill this gap and
provide engineering students with the computational and experimental skills to approach with more confidence the
development of simple embedded devices to perform common tasks. The tasks selected cover the basic operations of
a common ARM based microcontroller. Once familiar with a microcontroller, you will soon appreciate that they are
all similar, and that your new skills are amazingly transferable.

1.1.2 A few words about sponsors

This activity has been made possible by two sponsors.

• ARM and STMicroelectronics have donated the Nucleo microcontrollers used in this lab. We are very grateful
to them.

• The University of Cambridge provided financial support through a Teaching And Learning Innovation Fund to
run a number of student projects and promote the use of Open Source tools in undergraduate education. This
grant currently covers the cost of the 3rd year (IIA) project GM2, Technology for the poorest billion, as well as
part of the running costs of this second year activity.

3

CUED-Device-Programming Documentation, Release 1

Fig. 1: Source: Wilgengebroed on Flickr.

4 Chapter 1. Introduction

CHAPTER

TWO

TUTORIAL

Introduction
This part of the device programming activity can be done as soon as the boards are in your hands. Watch a few videos
(curated from the web), learn about the general programming approach, and get the LEDs to blink!

You will then think again about how to use functions in your programs, and learn how to use the push button integrated
with the board.

The debugging section will make sure you are familiar with what happens when you make errors. It is quite difficult
to understand what problems you have when you don’t have a screen to report messages - but there are techniques
available.

Many people find it useful to pass text to the computer connected to the board for debugging purpose. While the
corresponding microcontroller code is easy, it is more difficult to configure your computer to get it to work. Give a try,
but don’t panic if you can’t!

Requirements
1. STM32F746 STMicroelectronics development board (provided)

2. Micro-USB to USB cable (transmitting power & data)

3. Computer with web browser, internet connection and USB port available.

2.1 Getting started

2.1.1 What is a microcontroller?

Watch this short video (https://www.youtube.com/embed/jKT4H0bstH8) if you are not sure what a micro-controller
is.

5

http://www.st.com/en/evaluation-tools/nucleo-f746zg.html
https://www.youtube.com/embed/jKT4H0bstH8

CUED-Device-Programming Documentation, Release 1

2.1.2 ARM & mbed microcontrollers

Unboxing and powering the microcontroller

• Remove the micro-controller from its packaging, and connect the micro-USB cable to USB PWR slot. Connect
the other end to your computer. The microcontroller is powered on.

• If your micro-controller is brand new, it should be loaded already with a default program that blinks one of the
light emitting diodes (LED). The device has 3 LEDs accessible to the user. Press the blue button at the bottom
left corner to select another the LED. It should also blink at a different frequency. This is your first interaction
with your new microcontroller! If your device is not new, the behaviour may be different. We’ll now see how to
set the program that is executed when you start the system.

Tip: Keep the plastic packaging to store and transport the microcontroller.

Working with ARM’s online mbed development environment

There are many environments you can use to program the microcontroller. This activity assumes that you are using the
online environment provided by ARM to program their chips.

• Open an account on the latest online platform, Keil Cloud Studio. Visit https://studio.keil.arm.com

• Click login/sign-up. Create a new account if you don’t have one already.

• If this is the first time using this environment, there won’t be much to do yet. Let’s create a new project.

You are ready to start coding!

2.1.3 A first project

Creation of a new project

• Once you are logged in, select from the menu click on File, New. . . , Mbed Project.

• In the dialog window, select the example in the dropdown menu called mbed-os-example-blinky, in the mbed 5
section. (Do not select Mbed OS 6 or Mbed 2 versions for this tutorial.)

• The default project name should be mbed-os-example-blinky-5. You can change it if you want, but keeping it
as it is is fine too. If you would like to use version control, feel free to initialize a Git repository alongside the
project.

• Once the project is created, select is as your active project using the drop down list on the top of the left side-bar.

• Select the relevant target hardware, which is the specific device for which the executable has to be created. You
can do this using the drop down list below the active project selector on the left side-bar. Type or look for your
microcontroller, here the NUCLEO-F746ZG.

• In the middle section of the left side-bar, you will find a list of all the files in your new project (and more generally
a list of all your projects too). Open the “main.cpp” file by clicking on its name. The code should look like this:

/* mbed Microcontroller Library
* Copyright (c) 2019 ARM Limited
* SPDX-License-Identifier: Apache-2.0
*/

(continues on next page)

6 Chapter 2. Tutorial

https://studio.keil.arm.com

CUED-Device-Programming Documentation, Release 1

(continued from previous page)

#include "mbed.h"
#include "platform/mbed_thread.h"

// Blinking rate in milliseconds
#define BLINKING_RATE_MS 500

int main()
{

// Initialise the digital pin LED1 as an output
DigitalOut led(LED1);

while (true) {
led = !led;
thread_sleep_for(BLINKING_RATE_MS);

}
}

This code simply gets one of the LEDs to blink, as suggested by the project’s name. However, the style of the code and
the use of threads to control the timing goes beyond the scope of this section.

To get us started, we will use the code below as a first example. Please delete the sample code above from the editor
window, and replace it with the code below.

#include "mbed.h"

DigitalOut myled(LED1);

int main() {
while(true) {

myled = 1; // LED is ON
wait(0.2); // 200 ms
myled = 0; // LED is OFF
wait(1.0); // 1 sec

}
}

• The next step is to compile to program, i.e. create the set of machine instructions specific to the hardware you
selected. To do this, you will find a blue button with a little hammer symbol on it just below the target selection
drop-down menu on the left side-bar. Click it. There is a hammer symbol because we are “building” the compiled
program from the course. Every good builder should have a hammer. . .

• Whilst the code if compiling, lots of messages will be printed in the output panel under the editing window. If
there is no error in your code, it will eventually tell you that the build was a success!

• A file is then downloaded by the web browser on your computer, ready to be installed on your microcontroller.
The file name would be something like mbed-os-example-blinky-5.NUCLEO_F746ZG.bin

If you pay attention, you will notice a number of warning messages related to the use of the function “wait”. These
are listed in the Problems panel, next to the output panel. As you will see in this lab, this function is ineffective as it
keeps the processor busy doing nothing. The original template code did a better job. You can read more about this in
the documentation if you want, but for now we will continue to use the wait function.

2.1. Getting started 7

https://os.mbed.com/docs/mbed-os/v6.5/feature-i2c-doxy/group__platform__wait__api.html
https://os.mbed.com/docs/mbed-os/v6.5/feature-i2c-doxy/group__platform__wait__api.html

CUED-Device-Programming Documentation, Release 1

Dissecting the sample code

Basic knowledge of C/C++ programming is now assumed.

Do not hesitate to consult online documentation about C/C++ when appropriate. There are so many good sources
available to you! See for instance:

Basic Introduction: https://www.geeksforgeeks.org/c-language-set-1-introduction/

Good set of tutorials: http://www.tutorialspoint.com/cprogramming/

Here are a few comments that may be helpful at this point:

• main() is the function that is executed when the microcontroller starts.

• In C/C++, a line of code is terminated with ;, and a block is delimited by curly brackets {...}. This is different
from python where line returns and indentation provide such information. Python style indentation is however
good practice for the readability of your code.

• The main program contains a single “while” loop. The term between parentheses after while should be 0 or false
for the loop to end, so this loops never ends.

• The variable myled controls the state of LED1. Although it is manipulated as an integer, it is an instance of the
class DigitalOut. The pin number is specified when the object is declared, and remains attached to it. LED1 is
a shortcut for the pin number associated with the user LED1. These associations are board specific, and defined
in the “mbed.h” header file - so we don’t need to worry about them.

• The variable myled is defined at the top of the code, outside of any function. It is a global variable that will be
available to all functions.

Installing the code on your micro-controller

• Connect the micro-controller to your computer using a micro-USB cable. The board should be visible as a USB
drive on the computer. If it isn’t, you may need to install specific drivers; consult this page to get support. If you
are using Windows on versions older than Win 10, try ignoring warnings such as “Driver not installed correctly”;
it may work well enough already.

• Drag and drop the .bin file obtained at the previous step on the board

• LED at top right corner should be temporarily flashing to indicate that the transfer is happening. The program
starts automatically after that.

• You should see a LED1 blinking!

Task
Explore different blinking frequencies and try the other LEDs, LED2 and LED3.

8 Chapter 2. Tutorial

https://www.geeksforgeeks.org/c-language-set-1-introduction/
http://www.tutorialspoint.com/cprogramming/
https://www.tutorialspoint.com/cprogramming/c_while_loop.htm
https://os.mbed.com/docs/mbed-os/latest/apis/digitalout.html
http://www.tutorialspoint.com/cprogramming/c_scope_rules.htm
https://os.mbed.com/docs/latest/tutorials/windows-serial-driver.html

CUED-Device-Programming Documentation, Release 1

2.2 Keep going

2.2.1 Functions

Let’s refresh your mind regarding the declaration and use of functions in C/C++.

• Create a new project on the mbed development site. Select the same template (“Blinky LED test for the ST
Nucleo boards”), but give it a new project name. If you were to select a blank template, you would miss the
mbed.h header file that contains many important elements for your code.

• Replace the demo code with the code below. What does the select_led function do? If you are intrigued by the
expression “t%3”, look for its definition; it is the remainder after division of t by 3, also called modulo.

#include "mbed.h"

// Green LED
DigitalOut led1(LED1);
// Blue LED
DigitalOut led2(LED2);
// Red LED
DigitalOut led3(LED3);

void select_led(int l)
{

if (l==1) {
led1 = true;
led2 = false;
led3 = false;

}
else if (l==2) {

led1 = false;
led2 = true;
led3 = false;

}
else if (l==3) {

led1 = false;
led2 = false;
led3 = true;

}
}

int main() {
int t=0;
while(true) {

select_led(t);
wait(0.5);
t=(t%3)+1;

}
}

2.2. Keep going 9

https://en.wikipedia.org/wiki/Modulo_operation

CUED-Device-Programming Documentation, Release 1

Task
Modify the program so that select_led(0) turns all the LEDs off, and select_led(-1) turns them all on.
Change the sequence such that the pattern is {all off, led 1, led 2, led 3, all on, all off, etc.}.

For a more immersive experience, try your code while visiting this page .

Task (optional)
Program a LED sequence inspired by this video clip.

2.2.2 Physical input with a push button

The code below exploits a useful inclusion in your development board, a push button!

#include "mbed.h"

DigitalIn button(USER_BUTTON);
DigitalOut led2(LED2);

int main()
{
led2=0;
while(true)
{
if (button == 1)

led2 = true;
else led2 = false;
// Fyi, C programmers often like to turn such tests into logical statements:
// led2= !(button == 0);
// The "!" presents the logical negation.
wait(0.02); // 20 ms

}
}

Task
Create a new project for it, compile it, install it on your board, and try it. What happens with you press the
button? Is that what you expected?

USER_BUTTON is a constant defined to correspond to the pin number attached to the blue button.

When pressed button is true (1) and false (0) otherwise. By assigning its value to the LED, we can control the LED
with the button.

10 Chapter 2. Tutorial

https://www.youtube.com/watch?v=q_F9Nrs7ODQ
https://www.youtube.com/watch?v=oNyXYPhnUIs

CUED-Device-Programming Documentation, Release 1

The movie clip below (https://www.youtube.com/embed/XmWqP8laxxk) explains some of this using external LED
and switch. Look at it if you would like more information.

Task
Edit the code so that the blue LED is on when the button is pressed, but the red LED is on when the button is
not pressed (or any other LED combinations you could think about).

2.3 Debugging

Debugging is an important part of programming. Due to the lack of interfaces such as screen or sounds, one relies by
default on the basic LEDs to investigate program errors. But luckily it is also possible, with a bit of extra effort, to
establish text communications with the computer through the USB connection.

In this section, we will explore different types or errors, and techniques to detect them and try to address them.

2.3.1 Errors

Compile time errors

Exercise
Try to compile the code below. Read the three errors; they can be seen in the compile output section at the
bottom of the window, or by hovering your mouse over relevant red line in the scroll bar. Fix the errors.

#include "mbed.h"

DigitalOut myled(LED1);

int main() {
while(true) {

led1 = 1; // LED is ON
wait(0.2); // 200 ms
led1 = OFF; // LED is OFF
wait(1.0) // 1 sec

}
}

2.3. Debugging 11

https://www.youtube.com/embed/XmWqP8laxxk

CUED-Device-Programming Documentation, Release 1

Execution time errors

Exercise
Compile the code below. It should not give you any error. Move it to your controller.

#include "mbed.h"

// Pin D9 supports Pulse Width Modulation (PWM)
// Pin D8 does not support Pulse Width Modulation (PWM) --> run time error expected.

PwmOut led(D9);

int main() {
led = (float)0.5;
while(true) { }

}

You would not see much, but it sends on pin D9 a square signal that you could detect on an oscilloscope. If you are
curious and have a bit of spare time, feel free to read about what Pulse Width Modulation (PWM) does; you don’t need
to look at this now though. This is very handy to control the brightness of LEDs for instance.

As it happens, the pin D9 does support PWM, so all works fine. But pin D8 does not. Try changing the pin D9 to D8
in the code and observe the result.
The code should compile without error. But the board will then display its default runtime-error behaviour.
This behaviour may depend on the version of the hardware and libraries you are using. You may notice the
Ethernet port LED flashing irregularly, or LED 1 flashing with a pattern of 4 long and 4 short blinks. This is
the signal that the controller has experienced a runtime error.
The compiler does not fully check the suitability of the pins when the code is compiled, causing the microcontroller to
crash when it tries to execute the program on inappropriate pins.

These errors are more subtle to detect as the signals from the board are not clearly documented and not always consistent.
If you struggle to identify the runtime error, don’t get stuck and progress to the next section. Just remember that such
errors exist, and note the importance of testing as you go along, for instance using LED blink patterns to monitor your
progress along the executiong of the code, or using the technique introduced below.

12 Chapter 2. Tutorial

https://en.wikipedia.org/wiki/Pulse-width_modulation

CUED-Device-Programming Documentation, Release 1

Debugging strategies

There is a lot more information online on this topic. You will find a few more ideas there:

https://os.mbed.com/handbook/Debugging

2.3.2 Using the serial port to monitor and debug programs

This section is more advanced, but really useful once you get it to work. Communications between the microcontroller
and computer will be developed further in the following tutorial.

Different operating systems will use different software (that you may need to install) in order to talk to the board.
Each operating system will also have different naming conventions to identify the port used to connect to the board.
Therefore, it is difficult to provide here generic instructions, and you will have to find your way through other docs and
tutorials.

You can get your board to send text messages to your computer using Serial communications. What is difficult here is
that it depends on the computer connected to the board. Different operating systems will use different software (that
you may need to install) to communicate with the board, different names for the port used to connect the board, and
they would behave slightly differently. Give it a try, but don’t panic if it does not work for you straight away. You can
go through the next activity without reading text from the board.

Read the first half of the mbed doc on debugging with printf() calls, until the section Printf() from an interrupt context.

You will need to use a Terminal to handle the communication with the board and display text. This page may be useful
to install one:

https://os.mbed.com/handbook/Terminals

Give it a try, but don’t panic if it does not work for you straight away. You can go through the activity 1 without reading
text from the board, but serial communication is required for activities 2 and 3.

Example

Exercise
The program below should cycle the three LEDs, but doesn’t work quite as expected. You can try it on your device.
The third LED is not blinking, and you may assume at first that it is faulty.

#include "mbed.h"

Serial pc(SERIAL_TX, SERIAL_RX);

// Green LED
DigitalOut led1(LED1);
// Blue LED
DigitalOut led2(LED2);
// Red LED
DigitalOut led3(LED3);

void select_led(int l)
{

if (l==1) {
led1 = true;

(continues on next page)

2.3. Debugging 13

https://os.mbed.com/handbook/Debugging
https://docs.mbed.com/docs/mbed-os-handbook/en/latest/debugging/printf/
https://os.mbed.com/handbook/Terminals

CUED-Device-Programming Documentation, Release 1

(continued from previous page)

led2 = false;
led3 = false;

}
else if (l==2) {

led1 = false;
led2 = true;
led3 = false;

}
else if (l==3) {

led1 = false;
led2 = false;
led3 = true;

}
}

int main() {
pc.baud(9600);
int t=1;

pc.printf("Start!\r\n", t);

while(true) {
select_led(t);
pc.printf("LED %d is ON.\r\n", t);
wait(0.5);

// cycles the values of t
// check how the modulo operation (%) works if unsure

t=(t+1)%3;

}
}

But the output of the program looks like this:

Start!
LED 1 is ON.
LED 2 is ON.
LED 0 is ON.
LED 1 is ON.
LED 2 is ON.
LED 0 is ON.
LED 1 is ON.
LED 2 is ON.
LED 0 is ON.
LED 1 is ON.
...

Use this information to find the problem!

14 Chapter 2. Tutorial

CUED-Device-Programming Documentation, Release 1

Catching the output from Python

Serial communications can be used for much more than debugging. The example below shows how to catch the text in
python (running on your computer) using the pySerial library. You could process it further if needed.

import serial
board = serial.Serial("/dev/ttyACM0", 9600)
This creates an object able to establish a serial communication channel
with the board. The first parameter depends on your operating system
and probably needs to be updated.
The second is the baud rate. It needs to match the board's settings.

while True:
line = board.readline()
print(line)

Feel free to test this script. If you are using Linux, you may need to run it as a super-user to gain access to the port, i.e.
launch it from a terminal using `sudo python script_name.py”.

Of course you can also communicate the other way around. Serial communication is very handy to get devices to
interact with computers, or with each other. More information is available on the arm/mbed website:

https://os.mbed.com/handbook/SerialPC#serial-communication-with-a-pc

2.4 Serial communication

Many protocols exist to allow devices to communicate with each other. In this section, we briefly present the key steps
required to exchange information between the microcontroller and a computer connected to it on a USB port. This
port was primarilly used, so far, to program the device, but as seen in the previous section, it can also be exploited to
pass messages as strings of characters. We will first see how to pass strings from the computer to the device, and then
develop a simple python interface to send and receive data, and delegate computational tasks.

2.4.1 Receiving strings from the computer

The code below shows how to capture information from the user through the Serial (USB) port. The function doing all
the work is scanf. It reads from the serial port a string, and uses the format given as first parameter to extract variables
in specified format. The syntax is not trivial, and rather typical of C programming, but the function is actually very
powerful and flexible as a result. In all cases, a variable needs to be declared to receive the value before the function is
called. It is passed to the scanf function as a reference, i.e. an address in memory where the variable has to be written.
More on this as part of activity one.

#include "mbed.h"

Serial pc(SERIAL_TX, SERIAL_RX);

int main() {

// Reading a string from the computer

char s[32]; // Array of characters to store the name

pc.printf("\r\nPlease type your name.\r\n");
(continues on next page)

2.4. Serial communication 15

https://pythonhosted.org/pyserial/
https://os.mbed.com/handbook/SerialPC#serial-communication-with-a-pc

CUED-Device-Programming Documentation, Release 1

(continued from previous page)

pc.scanf("%s",s);
pc.printf("Your name is %s.\r\n", s);

// Reading integers and flaoting point values

int n;

pc.printf("\r\nPlease type an integer and I'll tell you what its␣
→˓double is.\r\n");

pc.scanf("%d",&n);
pc.printf("2 x %d = %d\r\n", n, 2*n);

float f;

pc.printf("\r\nLet's do the same with a floating point number...\r\n");
pc.scanf("%f",&f);
pc.printf("2 x %f = %f\r\n", f, 2*f);

}

Exercise
Try the code above. Depending on your serial terminal, you may or may not see the characters you type, or may
have to enter them in a specific text box. Look for the documentation of your serial terminal if needed. Once
you get it to work, modify it to request the name and age of the user, and return a single sentence as a string
containing the name and age of the user.

2.4.2 Creating a simple python interface

Delegating work to the microcontroller

The code below uses serial input and output to delegate a very simple task to the microcontroller, adding two numbers
together! This is obviouly a very ineffective way to add integers, but serves notheless as a proof of concept.

#include "mbed.h"

Serial pc(SERIAL_TX, SERIAL_RX);

int main() {

int n1, n2;

while(1){
pc.scanf("%d",&n1);
pc.scanf("%d",&n2);
pc.printf("%d\n", n1+n2);

}
}

16 Chapter 2. Tutorial

CUED-Device-Programming Documentation, Release 1

Exercise
Try the code above and make sure it works fine. What happens if you try to add fractional numbers? Try to
make it work for floating point numbers.

Python serial library

Here is a piece of python code initiating a serial channel to the microcontroller, sends two strings representing numbers
to add, and read the response of the micro-controller, as a string.

import serial
board = serial.Serial("/dev/ttyACM0", 9600)

communicating with strings

board.write(b'2\n')
board.write(b'5\n')
board.readline()

The port name "/dev/ttyACM0" depends on your operating system and the way it would label USB devices, as dis-
cussed in the debugging section. Replace by the port name on your system.

The characters "\n" are needed as they correspond to carriage return instructions that the microcontroller monitors
before scaning the input.

As it is, it is not very elegant, but the coversions back and forth to strings could be packaged into a python function,
only exposing to the user a relatively simple interface.

def mysum(n1, n2):
board.write(str(n1) + b'\n')
board.write(str(n2) + b'\n')
return(int(board.readline()))

Exercise
Use this python interface to communicate with your microcontroller. Add some code to the microcontroller
program to toggle the state a LED each time a sum is generated, as a visual confirmation that it did the work.

2.4.3 A more complex example

Why not try a more challenging task. . .

Exercise - part a
Create code on the microcontroller to calculate the n first elements of a mathematical series, for instance the
Fibonacci series. Read n from the serial port, and output the resulting elements on the serial port too.

Exercise - part b

2.4. Serial communication 17

CUED-Device-Programming Documentation, Release 1

Write a python function taking n as a parameter, and returning the n first elements of the series as an array or
list. The function must delegate the calculating to the microcontroller.

http://www.st.com/en/evaluation-tools/nucleo-f746zg.html

18 Chapter 2. Tutorial

http://www.st.com/en/evaluation-tools/nucleo-f746zg.html

CHAPTER

THREE

ACTIVITY 1: MEMORY AND INTERRUPTS

3.1 Learning objectives

This activity will teach you ways to catch user input, respond to it, and record data based on these events. These are
very generic aspects of device programming.

For practical reasons, you will learn and practice these skills using the embedded LEDs and button, which somehow
constrains what can be done. This activity however sets the foundations to handle more complex sensor data.

3.2 Task to complete

The aim is to program your microcontroller to record a sequence of colours entered by the user, and then play it back.
Here is the proposed approach:

• The board starts by cycling the three LEDs, turning them on one at time, and switching every second:
LED1 (green) for 1s –> LED2 (blue) for 1 sec –> LED3 (red) for 1s –> LED1 for 1 sec, etc.

• While the colours are cycling, the user selects a colour by pressing the button.
The colour that is ON at this time is recorded.

• The process continues until either:
– Option 1: N colours have been entered (the size of the sequence N is set in the code), or

– Option 2: the user double-clicks the button to indicate the end of the sequence.

• Once recording is completed, the recorded sequence is played back on the LEDs.
Option 1 is simpler, and is the recommanded task for most students. Option 2 is more challenging and may be preferred
by students who have more experience, and/or those who want to extend develop their skills beyond what is required
for this activity.

The video below presents a demo of the first option, so that you know what to aim for (https://www.youtube.com/
embed/PDv8u4roZXs).

19

https://www.youtube.com/embed/PDv8u4roZXs
https://www.youtube.com/embed/PDv8u4roZXs

CUED-Device-Programming Documentation, Release 1

3.3 What you may need to learn

To complete the task, you may need to learn a few important aspects of low level programming:

• To record a sequence, a data structure is needed.
In python, you can use clever data structures that could easily change size to accommodate more data.
When programming simple devices, one tends to keep tighter control on memory, allocating buffers with
a specific size. We will look at how simple arrays work in C and study examples to store and access data
in them.

• User interactions, such as pressing a button, are events that need to be monitored.
Micro-controllers have a mechanism for this called interrupts, whereby you can attach specific actions to
specific events. You will learn how to handle these interrupts effectively.

• Talking about memory at a low level requires us to learn about pointers.
A pointer is essentially a number that represents the location in memory of a particular data structure or
function code. Pointers will be useful to tell interrupts which function to call when the button is pressed,
or to keep track of where the memory buffer containing your data is located in memory.

Before getting started with the main task, you are invited to learn about the prerequisites mentioned above. Please take
them in the right order. This should give you the background knowledge needed to tackle the activity. It may take you
2-3 hours to go through it.

3.3.1 Pointers

This page provides background information to better understand the techniques used in this activity. You will find a lot
more information online about this topic online, possibly too much. The paragraphs below are really highlighting the
minimum required to not be surprised by the some the syntax used later.

Memory and address of variables

You already know that a key difference between C/C++ and python is the fact that variables have a specific type and
need to be declared.

When a variable is declared in a program:

int x;

the compiler allocates a region of the available memory to contain data of the type specified. For an integer, it would
allocate 4 bytes (32 bits) to store it. Whenever you refer to x in your code, the compiler understands that you talk about
the content stored in the area of memory that was allocated when you created the variable x.

When you write:

x=5;

the compiler writes in the block of memory associated with x the binary representation of the integer 5.

In general, you don’t need to know where your variable is in memory; you just need to know it is called x. In some
occasions it is however convenient to know the location in memory of a variable, called its address. In this section, we
will discuss about how to manipulate variables (and functions) using their memory address.

Considering again the variable x, one can get its address using the notation &x. The type of &x is generally not the
same as the type of x. An object storing an address of a particular data-type is called a pointer.

You can declare pointers like other variables, although the syntax is a bit unusual. The code:

20 Chapter 3. Activity 1: Memory and interrupts

CUED-Device-Programming Documentation, Release 1

int* p;
p = &x;

declares a pointer to an integer. In principle, it does not really matter whether the pointers to an int or anything else;
an address in memory is just a number regardless of what it points to. A pointer to an integer could in practice point
to an area of memory where you stored a float or even some code. The compiler uses however this information to help
you check consistency - you could do horrible things with pointer if you don’t use them properly. The following code
should for instance return an error:

float x;
int* p;
p = &x;

How to manipulate data stored at a particular address?

While &x represents the address of x, *p represents the object stored at the address p. The line:

*p=3;

would store 3 in the variable x.

Why is this useful?

In C/C++, when a function is called with parameters, the value of the parameters are passed, but not the variables
themselves. So the function cannot modify the values of its parameters.

Imagine you want to create a function that swaps the values of its parameters. You could write something like this:

void swap(int a, int b)
{

int temp;
temp=a;
a=b;
b=temp;

}

But this would not work, because if you call swap(x,y), the variables a and b in the swap function would relate to new
integer variables that contain copies of the values of x and y.

Pointers offer a way to solve this issue. Look at the following code and try to understand what it does.

void swap(int* a, int* b)
{

int temp;
temp=*a;
*a=*b;
*b=temp;

}

Now instead of passing the values to the function, we provide the location of the data in memory. The function can
now manipulate the content stored in memory to achieve the swap.

This function would work. To call it, we would need to pass the address of the variable instead of their values, i.e. call
it with:

3.3. What you may need to learn 21

CUED-Device-Programming Documentation, Release 1

swap(&x, &y)

to swap the content of the variable x and y;

Task
Without writing a full program and compiling it, think about how you would create a function neg(x) that
changes the sign of the variable x. Hint: the function would be called using neg(&x). . .

Function pointers

Pointers can also contain the address of a section of compiled code in memory, rather than data. This allows us to pass
a function as a parameter to another function by passing the address of its code in memory. We will use this later to
tell the microcontroller what to do (i.e. what code to execute) when particular events occur.

For now, let’s just look at a typical situation where this would be useful. Imagine that you want to find the second
derivative of a function 𝑓 . To find a good numerical estimate, you can use the central finite difference relationship that
you studied in first year:

𝑑2𝑓

𝑑𝑥2
=

𝑓(𝑥− ℎ)− 2𝑓(𝑥) + 𝑓(𝑥+ ℎ)

ℎ2

Your implementation is likely to be generic enough to be applied to any function. Passing the function as a parameter
is useful to make sure that such numerical methods can be applied to any suitable function.

Study the code below and focus on the implementation of the second_derivative function. It uses the USB Serial
communication method introduced in the tutorial section to output results, which is useful here to monitor what happens.

#include "mbed.h"

Serial pc(SERIAL_TX, SERIAL_RX);

float f_1(float x)
{

return(x-x*x);
}

float second_derivative(float (*f)(float), float x)
{

float h = 0.001;
float d2fdx2;
d2fdx2 = (f(x-h) - 2 * f(x) + f(x+h)) / (h*h);
return d2fdx2;

}

int main() {
pc.baud(9600);
float x=1.;

pc.printf("Function Pointer test program. \r\n");

(continues on next page)

22 Chapter 3. Activity 1: Memory and interrupts

https://en.wikipedia.org/wiki/Finite_difference_coefficient

CUED-Device-Programming Documentation, Release 1

(continued from previous page)

pc.printf("Function value: f(%f)=%f \r\n", x, f_1(x));

pc.printf("Second derivative: %f \r\n", second_derivative(f_1, x));

}

Note that we need to specify fully in the declaration of second_derivative the types of the input and output of the function
we will pass: float (*f)(float). This makes sure the compiler also knows how to interact with the function, i.e.
how to package its input, and how to interpret its output.

This example may look confusing if you are reading attentively enough. <<<<<<< HEAD Why didn’t we pass the
address of the function, using second_derivative(&f_1, 1)? Why didn’t we call the function f using (*f)(x)
in the second_derivative function? ======= Since second_derivative takes a pointer to a function as parameter, why
didn’t we pass the address of the function, using second_derivative(&f_1, 1)? Why didn’t we call the function f using
(*f)(x) in the second_derivative function? >>>>>>> master

The reason is that a function name is already treated by the compiler as a pointer to the function code, to make the
program more readable. There is some flexibility in the syntax though, and you could also have used the following
syntax for the calculation of the second derivative:

d2fdx2 = ((*f)(x-h) - 2 * (*f)(x) + (*f)(x+h)) / (h*h);

and for the function call:

second_derivative(&f_1, 1)

but this is less readable. Feel free to try it.

Comment: Note that we used again the printf function to display the output of the calculation. The expression %f
indicates that we want to insert there a float number. All the parameters to be inserted in the output are additional
parameters to the printf function. Printf is a very powerful function to produce text output. Feel free to explore further
the range of printf formatting options.

Task
Start a new project with the code above, add a function called first_derivative to calculate the first derivative of
a function using the approach above, and print both the first and second derivative of 𝑓(𝑥) = 𝑥2 for 𝑥 = 2.

𝑑𝑓

𝑑𝑥
=

𝑓(𝑥+ ℎ)− 𝑓(𝑥− ℎ)

2ℎ

Note that this requires you to be able to read the text output as presented in the debugging section. If you can’t
get the text output to work at this stage, just think about what you would do but don’t worry too much about
executing the code.

3.3. What you may need to learn 23

https://www.cprogramming.com/tutorial/printf-format-strings.html

CUED-Device-Programming Documentation, Release 1

3.3.2 Arrays

Declaring arrays and accessing their elements

Arrays in C/C++ are structures containing a set number N of elements of a given type T. To declare an array a of 10
integers, one would write:

int a[10];

Elements in the array are indexed between 0 and N-1. Brackets are used to access the content of each element. Here
are two examples:

a[0]=2;
x=a[0]+3;

The whole array can also be initiated at the point of declaration:

int a[5] = {0,1,2,3,4};

In memory, arrays are contiguous sections of memory that are allocated to contain exactly the amount of data requested.
Because all entries in an array are of the same type (and the same size in memory), accessing the elements of an array
is very fast: to find the location in memory of the nth element, you add to the address of the first element n times the
size on an element. To find the location of the next element, simply add the size of the element to the address current
element.

If you try to access the content of an array beyond the range allocated, expect to get random results, or a crash at
execution time.

Always double check what you are doing with arrays!
The lack of reproducibility of the errors they generate makes debugging sometimes difficult.

Passing arrays to functions

Because arrays can be large structures, arrays are not passed to functions by being copied. In fact, the variable a
declared above is de facto a pointer. The expression *a in your code would return the first element of the array.

The following function would for instance set all the elements of an array to zero:

int data[5];

void set_to_zero(int* a, int n)
{

int i=0;
while(i<n)
{

a[i]=0;
i=i+1;

}
}

main()
{

set_to_zero(data, 5);
}

24 Chapter 3. Activity 1: Memory and interrupts

CUED-Device-Programming Documentation, Release 1

Example

Study the code below, guess what it would do and try it on your board.

#include "mbed.h"

DigitalOut led1(LED1);
DigitalOut led2(LED2);
DigitalOut led3(LED3);

const int N = 4;
int led_cycle[N]={1,2,3,2};

void select_led(int l)
{

if (l==1) {
led1 = true;
led2 = false;
led3 = false;

}
else if (l==2) {

led1 = false;
led2 = true;
led3 = false;

}
else if (l==3) {

led1 = false;
led2 = false;
led3 = true;

}
}

int main() {
int t=0;
while(true) {

select_led(led_cycle[t]);
wait(0.5);
t=(t+1)%N;

}
}

Task
Change the code to repeat the sequence {Red, Blue, Red, Green, Blue, Green}.

3.3. What you may need to learn 25

CUED-Device-Programming Documentation, Release 1

3.3.3 Optional - Dynamic memory allocation

This section of the tutorial is useful for the second variant of the activity. It presents more advanced features of memory
management and data manipulation using pointers.

Memory allocation during program execution
In C and C++ we can request memory from the system. This is achieved using the functions malloc, realloc and free.
The function malloc (memory allocation) takes as input the size in bytes you wish to allocate in memory and returns a
pointer of type void * which points to the first byte of memory:

void *p = malloc(10); // Allocates ten bytes; p points to the first byte

If the memory allocation request would fail (for instance, due to no memory being available), then the pointer p is set to
NULL. It is good practice to check that the returned pointer is not NULL to verify that the memory allocation indeed
succeeded.

Memory reallocation
If we already have some memory allocated, then we can grow it with the function realloc (reallocate). realloc takes as
input a pointer to the first byte of an existing memory allocation and a desired new size of this memory allocation and
returns a pointer of type void * which points to the first byte of the new memory allocation:

void *np = realloc(p, 20);

The above function call takes our old memory allocation pointed to by the pointer p and request its new size to be 20
bytes. The new pointer np points to the first byte of this new memory allocation. The old content is preserved in the
new memory allocation (up to the new size of the new memory allocation). Note that the old pointer p now points to an
invalid memory area and is useless. This pointer is often set to NULL to signal that it does no longer point to anything
useful:

p = NULL;

This is known as a null-pointer. If p was not set to NULL it would be known as a dangling pointer. These are very
dangerous as any attempt to dereference them or use them in any other way results in undefined behaviour (possibly a
crash, such as a segmentation fault).

Freeing allocated memory
When we are done using the memory we need to return it to the system. Failing to do so means we have introduced a
memory leak. To free the new pointer np we use the function free and then set the pointer to NULL:

free(np);
np = NULL;

Note that only dynamically allocated memory can be modified with realloc. The functions malloc, realloc and free are
all designed to work with dynamically allocated memory. Memory allocations you did not create must not be passed
to realloc or free as this results in undefined behaviour.

Checking successful memory allocation
realloc can fail to reallocate memory, for example due to no memory being available. It is good practice to therefore
verify that the returned pointer is not NULL. If realloc fails then the original pointer still points to a valid memory
allocation and will need to be freed manually. A common pattern is therefore as follows:

void *np = realloc(p, 20);
if (np == NULL) {

free(p);
(continues on next page)

26 Chapter 3. Activity 1: Memory and interrupts

CUED-Device-Programming Documentation, Release 1

(continued from previous page)

// Insert code to handle memory allocation failure...
}

To use memory allocation in practice, it is useful to transform the pointer of type void * to something more useful.
For example, if we want to allocate memory for storing integers then we would like the pointer to be of type int *. We
would also like the memory to be allocated so that a particular number of integers fit within the allocated memory area.

Therefore, in practice, to allocate memory for 8 integers we would write:

int *p = (int *)malloc(sizeof(int)*8);

The sizeof operator returns the size of type int (4 bytes on your Mbed device), which we then multiply by 8 to get the
total number of bytes we need to allocate from the system.

The (int *) command before malloc is known as casting. Just like in a theatre play, where an actor can be recast into
many roles, a return value or variable can be recast into a different type. The casting operator changes the return type
of malloc from void * (a pointer to any type) to int * (a pointer to an integer).

Having allocated the memory and cast the returned pointer to a pointer of type int *, we can now read and write to
the memory area by dereferencing the pointer and using pointer arithmetic:

int *xp = p;
*xp = 16; Set first integer in the memory area to 16
xp++; // Proceed to the next integer in the allocated memory area
*xp = 32; // Set the second integer in the memory area to 32

We can also use array operations on our newly allocated memory area, as arrays in C and C++ are essentially the same
as allocated memory areas with a fixed type (note however that pointers to arrays cannot be modified by calling malloc,
realloc and free as they are not dynamically allocated by the system):

printf("First integer: %d"\r\n", p[0]);
printf("Second integer: %d"\r\n", p[1]);

Here is a complete program that demonstrates the above concepts:

#include "mbed.h"

int main()
{

int *p = (int *)malloc(sizeof(int)*4);
int *xp = p;
*xp = 2;
xp++;
*xp = 4;
xp++;
*xp = 8;
xp++;
*xp = 16;

for (int i = 0; i < 4; i++) {
printf("[%d]: %d\r\n", i, p[i]);

}

int *np = (int *)realloc(p, sizeof(int)*16);
(continues on next page)

3.3. What you may need to learn 27

CUED-Device-Programming Documentation, Release 1

(continued from previous page)

if (np == NULL) {
free(p);
printf("Memory allocation failure!\r\n");

}
else {

for (int i = 4; i < 16; i++) {
np[i] = 255;

}
for (int i = 0; i < 16; i++) {

printf("[%d]: %d\r\n", i, np[i]);
}
free(np);

}
}

3.3.4 Interrupts

LED toggle

Let’s look at one of the previous tutorial’s examples:

#include "mbed.h"

DigitalIn button(USER_BUTTON);
DigitalOut led2(LED2);

int main()
{
led2=0;
while(true)
{

if (button == 1)
led2 = true;

else led2 = false;
wait(0.02);

}
}

What if we would like now to toggle the state of the LED each time we press the button: if the LED is off, pressing the
button turns it on, but if the LED is on, pressing the button turns it off.

Instinctively one would want to write the code below:

#include "mbed.h"

DigitalIn button(USER_BUTTON);
DigitalOut led1(LED1);

int main()
{
led1=0;

(continues on next page)

28 Chapter 3. Activity 1: Memory and interrupts

CUED-Device-Programming Documentation, Release 1

(continued from previous page)

while(true)
{

if (button == 1)
led1 = ! led1;
// The symbol ! is the logical NOT

wait(0.02);
}

}

But this doesn’t really work. Try it out, and try to find out why.

The problem is that the state of the LED keeps alternating as long as the button is pressed. What we need to capture is
not the state of the button, but a particular event: the change of state of the button when it is pressed.

How to solve this problem?
You could increase the duration of the wait, hoping that the user would release the button by the time it ends. But then
you might miss the input all together.

One could monitor carefully the state of the button, and switch colour when the state changes. It would be manageable
for such a simple task, but hardly scalable for complex interactions. Luckily, micro-controllers have mechanisms to
help you do this, either at the hardware level, or at a low software level (kernel), such that the user doesn’t need to worry
about it.

Pin interrupts

Let’s look at the code:

#include "mbed.h"

InterruptIn button(USER_BUTTON);

DigitalOut led1(LED1);

// Callback function to associate with the press button event
void onButtonPress()
{

led1 = !led1;
}

int main()
{ // attach the address of the callback function to the rising edge

button.rise(onButtonPress);
while(true)
{ // You could do something useful here
}

}

As you can see, this looks simple enough! The line:

InterruptIn button(USER_BUTTON);

creates an object of type InterruptIn that gives you a handle to monitor events on the pin USER_BUTTON.

The line:

3.3. What you may need to learn 29

CUED-Device-Programming Documentation, Release 1

button.rise(onButtonPress);

assigns a particular function with the “rise” event on the pin, which corresponds here to the button being pressed. It
may appears slightly counter intuitive that the event is called rise when you are pushing the button down. . . but this
refers to the fact that the input (voltage) on the corresponding pin is transitioning from O to 1 (Vcc).

The function onButtonPress is called a callback function. It doesn’t take any parameter, and doesn’t return anything
either. But it changes the state of the LED when the button is pressed.

Try the code and see what happens.

You will find that this somehow works, but it is still slightly random. This is because the button is not perfect. When
you press it, its state can fluctuate for a short time, a process called bouncing (https://www.youtube.com/embed/
hAVQpKVck9s).

Mechanical switches and debouncing

Bouncing is a common problem. There are different ways to solve this issue. Some involve hardware solutions, trying
to prevent rapid oscillations for instance using low pass filters. But here we are stuck with this button on the board. . .
So the way forward is to fix it with software, another common approach.

We will see here a quick and dirty fix to confirm that the issue is indeed related to switch bouncing. In the next section,
we will discuss proper solutions to this problem.

What we want is to prevent the onButtonPress function to be called multiple times when the button is pressed and its
state fluctuates for a little while. To do this, we just need to force the program to wait a short time after each call of the
callback function. This can be achieve by adding a wait function call in the callback function.

Because it is not good practice to add a wait call in an interrupt (interrupt calls should execute fast), the latest mbed
compilers only allow us to use the wait_us function. Here, “us” stands for microseconds, which is the unit of the
duration to be passed as parameter. We will see in the next tutorial how to use properly interrupts without relying on
the wait functions.

Try to change the code of the callback function to:

void onButtonPress()
{

led1 = !led1;
wait_us(300000);

}

You should find at this point that the toggle behaves properly. Hooray!

In the next section, we will explain why this solution is not good practice, and develop a more complex example that
will show you how to properly use interrupts.

3.3.5 Interrupts (continued)

LED toggle 2.0

Let’s assume that we want to toggle the state LED1 with the push button, while the microcontroller is busy doing
something very important, such as monitoring the temperature of a nuclear plant. To illustrate the progress of this
other important task with the hardware present on the board, we will simply get the micro-controller to flash another
LED, and assume that it is important to do it in a very regular manner.

We could start with the following code:

30 Chapter 3. Activity 1: Memory and interrupts

https://www.youtube.com/embed/hAVQpKVck9s
https://www.youtube.com/embed/hAVQpKVck9s

CUED-Device-Programming Documentation, Release 1

#include "mbed.h"

InterruptIn button(USER_BUTTON);

DigitalOut led1(LED1);
DigitalOut led3(LED3);

void onButtonPress()
{

led1 = !led1;
wait_us(300000);

}

int main()
{

button.rise(onButtonPress);
while(true)
{ // This is where important calculations are made...

led3 = !led3;
wait(0.1);

}
}

Try the code. LED3 should blink, and the button toggle the state of LED1. So all seems to work. But. . .

Callback functions need to be small

Focus now on what happens to the task running in the main function loop, flashing periodically the LED 3. This loop
stops for a little while when the button is pressed, i.e. when the micro-controller is running the wait statement in the
callback function. Although we need this time delay to prevent bouncing, this also prevents the potentially important
code running in the main function to be executed properly. Large callback functions would also block other interrupts
that may be required to handle additional events in a more complex application. For this reason, it is not appropriate
to include time consumming code in a callback function.

It is a general rule to spend as little time as possible in interrupts. Commands such as wait, printf and com-
munications with other ports including Serial or I2C, may cause your micro-controller to not behave properly.
Allocating and reallocating memory should also be avoided within a callback function. The compiler may even
refuse to compile a code that includes such time consumming tasks in the callback functions.
What if you really would like to excute longer tasks in an interrupt? You will need to think about alternative ways to
execute the time consuming tasks outside of the interrupt. For instance, you could introduce a global boolean variable
that the interrupt sets to a particular value to indicate the interrupt code was executed. The main function loop may
then monitor this variable and execute the relevant code when appropriate.

Back to our LED toggle example. . . The wait statement is only here to prevent the button to trigger multiple interrupts
when pressed. We could do this differently: get the callback function to deactivate the button interrupt for a short time,
and then call another function later on to turn it back on again. During this time interval, we want of course the main
function to continue its important job of flashing the LED.

We could deactivate an interrupt with the following statement:

button.rise(NULL);

NULL is a generic C/C++ constant. When a pointer value is NULL, it indicates that the pointer points to nothing. The
code line above therefore replaces the address of the callback function with a value that unambiguously indicates that

3.3. What you may need to learn 31

CUED-Device-Programming Documentation, Release 1

there is no call-back function to call.

But how to reattach the interrupt to the callback function after a while, without using a wait statement? Time to talk
about timers and time interrupts.

Time interrupts

Time interrupts allows us to trigger a callback function after a given amount of time. Two main methods are available
with mbed:

• Timeout if a callback function needs to be called only once after a time delay,

• Ticker if the callback function needs to be called at regular time intervals.

To use a time interrupt, we need to declare a variable of type Timeout.

Timeout event_timeout;

We can now attach to the object event_timeout a callback function and indicate the time interval before it is called.
This is done with the following statement:

event_timeout.attach(event_callback_function, time_interval);

where event_callback_function is the name of the function to call, and time_interval is expressed in seconds.
Time is counted from the moment when the callback function is attached.

Now look at the following code, and try it on your board.

#include "mbed.h"

DigitalOut led1(LED1);
DigitalOut led3(LED3);

InterruptIn button(USER_BUTTON);

Timeout button_debounce_timeout;
float debounce_time_interval = 0.3;

void onButtonStopDebouncing(void);

void onButtonPress(void)
{

led1 = !led1;
button.rise(NULL);
button_debounce_timeout.attach(onButtonStopDebouncing, debounce_time_interval);

}

void onButtonStopDebouncing(void)
{

button.rise(onButtonPress);
}

int main()
{

(continues on next page)

32 Chapter 3. Activity 1: Memory and interrupts

CUED-Device-Programming Documentation, Release 1

(continued from previous page)

button.rise(onButtonPress);
while(true)
{ // This is where important calculations are made...

led3 = !led3;
wait(0.1);

}
}

Is the problem fixed?

Comment about function declarations
Note the line:

void onButtonStopDebouncing(void);

It seems that we declare the function twice. Why?

This is because the functions onButtonStopDebouncing and onButtonPress call each other.

If you remove the first declaration of onButtonStopDebouncing, the compiler will tell you that
onButtonStopDebouncing is not defined in the function onButtonPress, which is correct, because it is de-
fined further down in the code. But if you swap the order of the function, then the compiler will complain that
onButtonPress is not declared in onButtonStopDebouncing.

This is why we have to introduce an early declaration of onButtonStopDebouncing before we write the code of the
function onButtonPress. It tells the compiler what the function onButtonPress will be (types of parameters and
output), which is all the information it needs to compile onButtonPress properly.

No time to waste!

The solution above is very satisfactory. We are not wasting time any more in the interrupts. Having done this, it now
looks like the code inside the main function is not optimal either; we are still wasting time stuck in a wait statements.
Maybe there is also a better way to blink a LED while allowing the processor to focus on more important tasks?

Try the code below. It uses the Ticker class, which calls a callback function at regular time intervals. Essentially the
whole program is now managed by interrupts. We don’t even need the while loop in the main function.

#include "mbed.h"

DigitalOut led1(LED1);
DigitalOut led3(LED3);

Timeout button_debounce_timeout;
float debounce_time_interval = 0.3;

InterruptIn button(USER_BUTTON);

Ticker cycle_ticker;
float cycle_time_interval = 0.1;

void onButtonStopDebouncing(void);

(continues on next page)

3.3. What you may need to learn 33

CUED-Device-Programming Documentation, Release 1

(continued from previous page)

void onButtonPress(void)
{

led1 = !led1;
button.rise(NULL);
button_debounce_timeout.attach(onButtonStopDebouncing, debounce_time_interval);

}

void onButtonStopDebouncing(void)
{

button.rise(onButtonPress);
}

void onCycleTicker(void)
{

led3 = !led3;
}

int main()
{

button.rise(onButtonPress);
cycle_ticker.attach(onCycleTicker, cycle_time_interval);

// Even more important code could be placed here

}

Note that the main function could still access the state of the button or LEDs at any time.

The section on dynamic memory allocation is most relevant to students tackling the second variant of the activity,
where you don’t know at the start how many colours to record in the sequence.

34 Chapter 3. Activity 1: Memory and interrupts

CHAPTER

FOUR

ACTIVITY 2: I2C BUS AND SENSORS

4.1 Learning objectives

In this second activity, you will learn about a very common aspect of device programming: monitoring, logging and
transferring sensor data. It builds up on the skills you learned in the first activity - you will get to use arrays and
interrupts again!

This activity will teach you how to interact with a large class of devices communicating with the ubiquitous I2C bus
and protocol. You will also have to polish your soldering skills, and learn how to navigate a complex data-sheet to find
the information you need.

4.2 Task to complete

The data-sheet of your sensor is available here.

Using the sensor and your micro-controller, you will have to:

• record a temperature value every second in an array that will contain the last minute of data (older data is replaced
by new data once the array is full). An timer interrupt must be used to trigger the recording of the value.

• if the temperature goes above a threshold value of 28 degree Celsius, get the temperature sensor to trigger an
interrupt that will get the LEDs on the microcontroller to flash a visual alarm signal (for you to imagine), stop the
recording, and transmit the last minute of data to your computer by USB serial communication. Values should
be transmitted as text (i.e. printed on the serial port), one value per line. The alarm signal should continue until
the micro-controller is rebooted.

• optional: if you are keen, you may try to capture and plot the temperature data on your computer using a python
script.

4.3 What you may need to learn

To complete the task, you may need to learn the following elements

• What are I2C devices and how to communicate with them?

• Soldering and testing your sensor.

• Configuring the sensor using its internal registers

• Responding to hardware interrupts from the sensor

35

CUED-Device-Programming Documentation, Release 1

Before getting started with the main task, you are invited to learn about the prerequisites mentioned above. Please take
them in the right order. This should give you the background knowledge needed to tackle the activity. It may take you
2-3 hours to go through it.

4.3.1 I2C bus and devices

What is I2C?

I2C is probably the most common protocol used to exchange information between microcontrollers and sensors, displays
or actuators. I2C is for instance the protocol used under the hood during IDP to link your different boards together.

In this section, you will find a brief introduction to I2C, with probably just enough information to get you started. Not
everything will be crystal clear, but hopefully most of the relevant sections of the examples code will make sense, and
you will manage to modify them to get them to do what you want.

Start with the following intro to I2C, from NXP, the company who developed it a while ago, and also the manufacturer
of the sensor you will use (https://www.youtube.com/embed/qeJN_80CiMU).

Of course you could go much deeper into the subject if you want. A few external links are pasted below for reference,
but reading them can wait for now.

You may need to refer to them later on to better understand the code examples.

I2C bus specification: short and extended.

Connecting an I2C device to your microcontroller

You need first to identify how to connect I2C devices to the microcontroller board. I2C sensors need at least 4 con-
nections, two for power (VCC and GND), and two for communications (SCL for the clock signal and SDA for the
data).

The user manual of your microcontroller should allow you to identify the default pins for these communications.
You can also find the description of the pins on the spec sheet online.

Task
Identify the different I2C connections available on your microcontroller. We will use the default I2C pins, called
I2C1_SCL and I2C1_SDA. Can you identify them on the board? We will also need to power the sensor using
the 3.3V pin to VCC, and GND. Look also for these pins on the board. They may appear multiple times. We will
use the female headers to connect to the make jumper wires.

Most of the microcontrollers will come with libraries and tutorials to quickly get your system to communication through
I2C. Here is the link to the mbed documentation: mbed I2c class. Note that the protocol is simple enough that with a
bit of experience it is easy to understand what signals microcontroller and attached devices are exchanging.

36 Chapter 4. Activity 2: I2C bus and sensors

https://www.youtube.com/embed/qeJN_80CiMU
http://i2c.info/i2c-bus-specification
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://os.mbed.com/platforms/ST-Nucleo-F746ZG
https://docs.mbed.com/docs/mbed-os-api/en/mbed-os-5.5/api/classmbed_1_1I2C.html

CUED-Device-Programming Documentation, Release 1

The data sheet of an I2C device

For any device you wish to connect using I2C, you will need to:

• identify or set the device address;

• configure the device if needed, by setting the value of different registers controlling the operation of the device;

• read and send data to the device.

All this information can be found in the data sheet of the device you are planning to use. Make sure you check the
availability of a good documentation before selecting a device. We will work with a sensor produced by NXP, with a
rather good documentation to support the work of the developer.

The data sheet of the LM75 sensor you will use is available here.

This is daunting document! It probably contains many technical words you are not familiar with. However, you probably
don’t need to understand it all to get to use the device in your application. Have a quick scan through it at first. If you
know what you are looking for, you will get this information out of it quickly enough afterwards.

Most of the time, there will also be sample codes available to you online. The sensor we use here is fairly popular, and
the mbed compiler even contains a fully functional template! Of course, we will use this to make sure that we have an
easy start.

Task
Look at the data-sheet of the sensor. What is the address range? How to set it? Your sensor is already soldered
to a breakout board. Look at the back of the breakout board, and try to understand how to set the address of
the device. The next section will show you how to implement it.

4.3.2 Soldering

You need to solder the header pins to the breadboard, and set the address of your device by soldering each pin A0-A2
to ground (or VCC if you would like to use a different address).

Soldering is not difficult, but it is nonetheless a basic skill to learn. In this section, you will find various videos and
links to get you started with soldering if you are not familiar with it already.

General information about soldering

Here is a good introductory video (https://www.youtube.com/embed/f95i88OSWB4), and a comic that will teach you
what you need to get started.

This is a more advanced video (https://www.youtube.com/embed/t9LOtOBOTb0) that will show you many more sol-
dering tips, certainly beyond what is needed here.

4.3. What you may need to learn 37

https://www.youtube.com/embed/f95i88OSWB4
https://www.youtube.com/embed/t9LOtOBOTb0

CUED-Device-Programming Documentation, Release 1

38 Chapter 4. Activity 2: I2C bus and sensors

CUED-Device-Programming Documentation, Release 1

DIY in the EIETL

Task
Solder the headers and set the I2C address of your device

Where to find the soldering stations, and what equipment will you find there?
Youtube link 1: https://www.youtube.com/embed/OauRHzzIPMk

Youtube link 2: https://www.youtube.com/embed/77X4XcjcQV0

Note the safety warning:

• The soldering iron will be hot!

• Make sure to start the fume extraction.

• Wear safety goggles.

• Use lead-free solder where possible. If using solder containing lead, make sure to wash your hands afterwards.

Soldering the components
Youtube link 1: https://www.youtube.com/embed/knjjIf9SR9c

Youtube link 2: https://www.youtube.com/embed/1SItk_6e-mc

Danger: Be very careful not to shortcut VCC and GND when you connect the address pads. It is easy to link the
three of them together if you are not paying attention. Such a shortcut will prevent the system to work, and would
probably damage your board and/or sensor. So check that the soldering is fine, and use an R-meter to make sure
that VCC is not connected to GND.

Have you made a mistake? Don’t panic, and read below!
Removing solder
Youtube link 1: https://www.youtube.com/embed/mcc2kdqpvKg

Youtube link 2: https://www.youtube.com/embed/pWi0EyEDnEU

The Science of soldering

Did you know that the composition of Lead-based solder is determined to match a eutectic transition? You can use
your knowledge of Materials to understand how solder works!

Have a look at this nice page from DoITPoMS - Cambridge University Materials Science on the science of soldering.
The Wikipedia page on solder is very informative too.

Task

4.3. What you may need to learn 39

https://www.youtube.com/embed/OauRHzzIPMk
https://www.youtube.com/embed/77X4XcjcQV0
https://www.youtube.com/embed/knjjIf9SR9c
https://www.youtube.com/embed/1SItk_6e-mc
https://www.youtube.com/embed/mcc2kdqpvKg
https://www.youtube.com/embed/pWi0EyEDnEU
https://www.doitpoms.ac.uk/tlplib/phase-diagrams/uses.php
https://en.wikipedia.org/wiki/Solder

CUED-Device-Programming Documentation, Release 1

Look at the lead-tin (Pb-Sn) phase diagram on your “teach yourself phase diagrams” handouts, and check on
the Wikipedia page that the composition of lead-based solder used in electronics is eutectic. Find evidence that
the composition of lead based solders used in plumbing tend to be set away from the eutectic point.

Link to the relevant file of Moodle (2017): teach yourself phase diagrams

4.3.3 Connecting and testing the device

Connecting the device

You were previously asked to identify the default I2C pins on your micro-controller, called I2C1_SCL and I2C1_SDA
in the pin layout; they are names D14 and D15 on the board, on the top-right section of the board.

While your board is disconnected from the computer, use the male end of the jumper wires to connect VCC to the 3.3V
pin of the board, and GND to GND. Then connect SDA and SCL to the pins D14 and D15, respectively, in order to use
the default I2C pins.

Testing that the device is able to communicate and check its address

The code below will help you test communications with your device. It scans all I2C addresses on the bus connected
to the default I2C pins. For each address, it tries to read something. If it manages to find a device, it returns the address
on the serial port so that you can catch it on your terminal. It also uses led flashes to communicate visually the address.

Task
Paste the code below in a new project on the mbed compiler. Compile it and place it on your board. Check the
that device address returned matches to address set to the device after soldering the pads.

#include "mbed.h"

// Create an I2C object on the defeault pins D15 and D14
I2C i2c(I2C_SDA, I2C_SCL);
// There are other pins that can be used for I2C the above is the default bus
// See the board pinout on the mbed webpage for more details.

// Use the built in serial bridge to output
Serial pc(USBTX, USBRX);

// Some flashy lights
DigitalOut green(LED1);
DigitalOut blue(LED2);
DigitalOut red(LED3);

// Create a timer so we can time the bus scan
Timer t;

// Buffer for read data
char read_data[2];

(continues on next page)

40 Chapter 4. Activity 2: I2C bus and sensors

https://www.vle.cam.ac.uk/mod/resource/view.php?id=452751

CUED-Device-Programming Documentation, Release 1

(continued from previous page)

// A variable for counting
unsigned int i=0;

// For recording the address of the last device found
unsigned int address=0;

int main()
{

green=0;
blue=0;

// Make sure you set your serial terminal to match this
pc.baud(9600);

// Most I2C devices can cope with 400 kHz bus speed.
// If you have any problems reduce it to 100 kHz.
// Try changing the I2C speed and seeing what the effect on the speed of the program␣

→˓is.

i2c.frequency(400000);
pc.printf("Starting Bus Scan....\r\n");

// Reset and start timer
t.reset();
t.start();

// Address '0' is all call and it is undefined how this would work
// so we run from address 1 to 127

for(i = 1; i < 128 ; i++)

{
// Read one byte from whatever the default read register is from every I2C␣

→˓address.
// i2c.read returns the I2C ACK bit sent by the slave, if anyone answered the␣

→˓call:
// 0 on success (ack), non-0 on failure (nack)

// Note that while I2C addresses are from 1-127 we need to left-shift one bit
// as the address sent on the I2C bus is 8bits
// with the lowest but indicating if this is a write or read transaction.
// The operation i<<1 does the bit shifting.

if(i2c.read(i<<1, read_data, 1)==0)
{

// Print the address at which we found a device as a hex and as a decimal␣
→˓number

pc.printf ("I2C device found at address Hex: %x Decimal: %d\r\n",i,i);

(continues on next page)

4.3. What you may need to learn 41

CUED-Device-Programming Documentation, Release 1

(continued from previous page)

// If we find one device at least light the green LED and save its address
green=1;
address=i;
}

// Flash the blue LED to show we are scanning - only slow if no devices connected
blue=!blue;
}

// Stop the timer and report time to scan
t.stop();
pc.printf("Bus scanned in %d ms\r\n",t.read_ms());

// If device not found flash both red & blue LEDs
if (address==0)

{
red=0;green=0;blue=1;
while(1)

{
red=!red;
blue=!blue;
wait(0.25);
}

}

// If we find at least one device
// Flash address using LEDs:
// Red flashes first digit and blue second

red=0; blue=0;

while(1)
{
wait(2);
for (i=0;i<(address/16);i++)

{
wait(0.25);
red=1;
wait(0.25);
red=0;
}

wait(0.5);
for (i=0;i<(address%16);i++)

{
wait(0.25);
blue=1;
wait(0.25);
blue=0;
}

}
}

42 Chapter 4. Activity 2: I2C bus and sensors

CUED-Device-Programming Documentation, Release 1

Getting your first temperature measurements

Task
Start a new project, and select the basic template “mbed OS Blinky LED Hello World”. Replace the content of
main.cpp with the code below. Compile it and try it on your board. Hold the sensor between your fingers, and
monitor the evolution of the temperature.
You will need to catch the serial output to read the temperature, as explained in the corresponding tutorial section:
Using the serial port to monitor and debug programs

Use this code as it is, without necessarily trying to understand it at this point. The next section will describe in detail
how to communicate with the sensor and extract relevant information from the data sheet, if you are not familiar with
this yet.

#include "mbed.h"

#define LM75_REG_TEMP (0x00) // Temperature Register
#define LM75_REG_CONF (0x01) // Configuration Register
#define LM75_ADDR (0x90) // LM75 address

I2C i2c(I2C_SDA, I2C_SCL);

DigitalOut myled(LED1);

Serial pc(SERIAL_TX, SERIAL_RX);

volatile char TempCelsiusDisplay[] = "+abc.d C";

int main()
{

char data_write[2];
char data_read[2];

/* Configure the Temperature sensor device STLM75:
- Thermostat mode Interrupt
- Fault tolerance: 0
*/
data_write[0] = LM75_REG_CONF;
data_write[1] = 0x02;
int status = i2c.write(LM75_ADDR, data_write, 2, 0);
if (status != 0) { // Error

while (1) {
myled = !myled;
wait(0.2);

}
}

while (1) {
// Read temperature register
data_write[0] = LM75_REG_TEMP;
i2c.write(LM75_ADDR, data_write, 1, 1); // no stop

(continues on next page)

4.3. What you may need to learn 43

CUED-Device-Programming Documentation, Release 1

(continued from previous page)

i2c.read(LM75_ADDR, data_read, 2, 0);

// Calculate temperature value in Celcius
int tempval = (int)((int)data_read[0] << 8) | data_read[1];
tempval >>= 7;
if (tempval <= 256) {

TempCelsiusDisplay[0] = '+';
} else {

TempCelsiusDisplay[0] = '-';
tempval = 512 - tempval;

}

// Decimal part (0.5°C precision)
if (tempval & 0x01) {

TempCelsiusDisplay[5] = 0x05 + 0x30;
} else {

TempCelsiusDisplay[5] = 0x00 + 0x30;
}

// Integer part
tempval >>= 1;
TempCelsiusDisplay[1] = (tempval / 100) + 0x30;
TempCelsiusDisplay[2] = ((tempval % 100) / 10) + 0x30;
TempCelsiusDisplay[3] = ((tempval % 100) % 10) + 0x30;

// Display result
pc.printf("temp = %s\n", TempCelsiusDisplay);
myled = !myled;
wait(1.0);

}

}

4.3.4 I2C communication with the LM75 sensor

In this tutorial, we assume that the device is connected and returns already a meaningful temperature, as introduced
in the previous section. We will in particular analyse in detail the sample code providing temperature measurements:
Getting your first temperature measurements

We will provide more details about how the device is configured, linking the code with the relevant sections of the
datasheet.

Most of the information provided here is based on the section 7 of the datasheet. Please glance through it, and make
sure to have it visible while reading this page.

44 Chapter 4. Activity 2: I2C bus and sensors

CUED-Device-Programming Documentation, Release 1

Device registers

Section 7.4 of the datasheet lists the four data registers present in the sensor (see table 5 in datasheet). The configuration
register controls the different modes of operation of the device; you can read or write on it, although you would most
likely simply write on it to set the desired behaviour of the sensor. The temp register contains the last temperature
reading; it is read only, as expected. The other two registers contain the information needed to control the threshold
temperatures, and will be further discussed in the next section of the tutorial.

All interactions with the device involve writing and reading the content of these registers, so this is what we will look
at next.

Reading and writing on the registers

Each register has an address. There is a special register in the device called pointer register that sets which data register
will be involved in the following reading or writing operation. We do not need to worry too much about the details,
as communications will be handled by special functions in the mbed I2C library. But it is important to understand the
sequence of typical I2C communications to be able to use properly these high level functions.

A typical sequence to write in the data registers consists in sending through I2C the device address (7 bits and R/W bit
set to W), followed by the value of the pointer register, to indicate which data register we want to write on, and the data
to store on this register (see figs 7 and 11 in the datasheet).

Note the the value of the data line (SDA) changes when the clock is low, and must not change when the clock (SCL) is
high, as this is when it would be read. However there are two exceptions, which are particular signals to indicate the
start and end of communications. To indicate a start of I2C communication, the master would take SDA from high to
low while the SCL is high. To indicate the end of the communication, the master would take SDA from low to high
while the SCL is high. You will spot these as START and STOP in figs 7 to 12.

Note also that data is only sent one byte at a time, followed by the acknowledgement bit.

To read, a similar process is followed, but two steps are needed (See figs 8 and 11 in the datasheet). First, we send to
the I2C bus the device address (7 bits and R/W bit set to W), followed by the value of the pointer register to indicate
what we would want to read. The microcontroller would then send another start signal. The next part involves sending
again to the I2C bus the device address, but this time with the R/W bit set to R. The master (microcontroller) would
continue to control the clock, but this time the slave (sensor) would control the data line, and send, one byte at a time,
the data requested.

I2C library functions

We will use here the write and read functions of the mbed library to performs a complete write/read transactions. Both
functions handle the start, stop and acknowledgement signals for us.

Write to a slave device

int write (int address, const char *data, int length, bool repeated=false)

Read from a slave device

int read (int address, char *data, int length, bool repeated=false)

Let’s look at what these parameters are, and shed some light on the sample code provided by the arm-mbed environment.

The address:

The mbed documentation says: “address: 8-bit I2C slave address [addr | 0]”. The address should therefore be passed
as 8 bits, including the 7 bits for the address, followed by the read/write bit (as the least significant bit). The value of
this bit actually doesn’t matter as it is overridden by the library. So how to determine this value from the datasheet?

4.3. What you may need to learn 45

https://os.mbed.com/docs/latest/apis/i2c.html

CUED-Device-Programming Documentation, Release 1

From section 7.3 of the datasheet, we know that the seven bit address should be 1001000 (the last three bits depends on
how you soldered the address pads on the chip). This corresponds to 72. To turn it into the 8 bits information needed
for the mbed library, we need to add an extra bit at the end, that we can set to 0 or 1. Let’s set it to 0: 10010000 =
144 in base 10, or 90 in hexadecimal. Hexadecimal numbers are typed with the prefix 0x, for instance 0x90 would be
equivalent to 144. Hexadecimal numbers are commonly used to represent integer data covering 1 byte (2 hexadecimal
digits) or 2 bytes (4 hexadecimal digits).

This is why in the code the address is defined as:

#define LM75_ADDR (0x90) // LM75 address

The data buffer:

Whether we need to write or read, we need a bit of memory to handle this information. A byte array of the right size
is therefore needed.

• To control the config register, we need two bytes, one to store the register pointer, and one of the register value.

• To write on any of the three temperature registers, we need three bytes, one for the register pointer, and two for
the temperature value.

• To read any of the three temperature registers, we need to write one byte for the register pointer, and then read
two for the temperature value.

The following lines in the sample code define the relevant buffers:

char data_write[2];
char data_read[2];

The buffers then need to be manipulated to contain the relevant information. This would set the value of the configu-
ration buffer:

#define LM75_REG_CONF (0x01) // Configuration Register

data_write[0] = LM75_REG_CONF;
data_write[1] = 0x02;

Repeated start:

By default, the read and write commands would complete the transaction with the STOP signal (repeated=false).
See for instance:

int status = i2c.write(LM75_ADDR, data_write, 2, 0);

However, to read data, we need two steps: first, we need to indicate, with a write command, which register we want to
read; next, we need to read the register we previously expressed interest for. The write call should in this case be sent
with the last parameter (repeated) set to true or 1.

data_write[0] = LM75_REG_TEMP;
i2c.write(LM75_ADDR, data_write, 1, 1); // no stop
i2c.read(LM75_ADDR, data_read, 2, 0);

Returned values:

0 on success (ACK), non-0 on failure (NACK). The sample code uses this returned value to signal any error in the
communication:

46 Chapter 4. Activity 2: I2C bus and sensors

CUED-Device-Programming Documentation, Release 1

if (status != 0) { // Error
while (1) {

myled = !myled;
wait(0.2);

}
}

Converting the raw data into a temperature

Transforming data buffers into floating point temperature, and vice-versa, is a tricky task. You may not need to create
such code, and could reuse the relevant sections of the examples code provided, but it helps to understand how they
work.

The way temperatures are stored on the registers is defined in section 7.4.3 and 7.4.4. Have a look at it first. This is the
content of the buffer data_read at the start:

These 11 bits represents the whole temperature range, with a 0.125 degree Celsius precision, i.e. 1/8 of a degree. The
binary value of each bit, including sign, is detailed in the table below:

The sign convention follows an approach called two’s complement. Table 10 of the datasheet shows examples of
temperature values and their equivalent representation in bits.

The gist of what follows consists in manipulating the bit array to extract the exact value of the temperature. You may
want to learn a bit about bitwise operations in C++ if you never encountered this before.

The mbed example code for the LM75 sensor does something really complicated and long winded to build the temper-
ature as a text. The appendix below explains what it does, but we are going to explain here a much simpler method.

The representation we get from the sensor, stored in data_read, is not too far from the representation of a 16-bit signed
integer:

If we were to paste the 16 bits of data_read in a 16-bit integer, we would get a number that is the temperature scaled by
a factor 256, since the bit corresponding to 1 celsius in the sensor data corresponds to 256 in the 16-bit int. This may
be a good strategy to follow.

To use precisely defined integer types, we will use the header file stdint.h:

#include "stdint.h" //This allow the use of integers of a known width

To declare a 16-bit signed int called i16, we would type:

int16_t i16;

4.3. What you may need to learn 47

https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikibooks.org/wiki/C_Programming/stdint.h

CUED-Device-Programming Documentation, Release 1

How to fill i16 with the relevant bits stored in data_read? This is where bitwise operations are handy!

i16 = data_read[0];

would create this :

To place the bits D10 - D3 at the right place, we need to shift them bitwise using the left-shift operator “<<”:

int16_t i16 = data_read[0] << 8

To complete the number, we need to add the bits D2-D0 contained in data_read[1]. This is done using the bitwise OR
operator, “|”, between data_read[0] << 8 and data_read[1].

int16_t i16 = (data_read[0] << 8) | data_read[1];

To get the temperature in degree Celsius, we need to divide this number by 256, making sure the output is a floating
point number. To indicate to the compiler that we want the floating point division, we write 256 with a decimal point,
256.0. The conversion code therefore becomes:

int16_t i16 = (data_read[0] << 8) | data_read[1];
float temp = i16 / 256.0;

Overall, the code with the new conversion function would be:

#include "mbed.h"
#include "stdint.h" //This allow the use of integers of a known width

#define LM75_REG_TEMP (0x00) // Temperature Register
#define LM75_REG_CONF (0x01) // Configuration Register
#define LM75_ADDR (0x90) // LM75 address

I2C i2c(I2C_SDA, I2C_SCL);

DigitalOut myled(LED1);

Serial pc(SERIAL_TX, SERIAL_RX);

int main()
{

char data_write[2];
(continues on next page)

48 Chapter 4. Activity 2: I2C bus and sensors

CUED-Device-Programming Documentation, Release 1

(continued from previous page)

char data_read[2];

/* Configure the Temperature sensor device STLM75:
- Thermostat mode Interrupt
- Fault tolerance: 0
*/
data_write[0] = LM75_REG_CONF;
data_write[1] = 0x02;
int status = i2c.write(LM75_ADDR, data_write, 2, 0);
if (status != 0) { // Error

while (1)
{

myled = !myled;
wait(0.2);

}
}

while (1)
{

// Read temperature register
data_write[0] = LM75_REG_TEMP;
i2c.write(LM75_ADDR, data_write, 1, 1); // no stop
i2c.read(LM75_ADDR, data_read, 2, 0);

// Calculate temperature value in Celcius
int16_t i16 = (data_read[0] << 8) | data_read[1];
// Read data as twos complement integer so sign is correct
float temp = i16 / 256.0;

// Display result
pc.printf("Temperature = %.3f\r\n",temp);
myled = !myled;
wait(1.0);

}

}

Comments regarding the sample code provided through the mbed compiler
Feel free at this stage to look again at the sample code provided with the mbed compiler: Getting your first temperature
measurements

You will recognise similar operations to transform the buffer into a number. However, because the code uses int (32
bits by default) instead of int16_t, the sign bit is not at the right position, and the conversion has to be done carefully
as a result.

Moreover, the mbed code only uses 9 bits on the data, as the shift “tempval >>= 7” destroys the values of D1 and D0,
hence the 0.5 degree precision, most likely to ensure compatibility with older sensors operating with 9-bit precision.

Note that the mbed code creates the string array digit by digit rather than using the printf function. A string is an array
of bytes representing text characters according to what is called the ascii table. The characters “0” to “9” corresponds to
values 30 to 39 in hexadecimal representation. So “k + 0x30” represents the ascii value of the character corresponding
to the digit value k, with 0<=k<=9.

We encourage you to use the method explained above (using the 16-bit integer) to record and display temperature data.

4.3. What you may need to learn 49

https://www.asciitable.com/

CUED-Device-Programming Documentation, Release 1

In the next (and final) section, you will be given a code to test the interrupt mode of the sensor.

4.3.5 LM75 sensor and interrupts

Hardware interrupt

Read section 7.1 of the datasheet. The OS pin of the sensor is useful to let the device monitor temperature in the
background, and send a signal when the temperature exceeds a threshold, Tos. A hysteresis temperature, Thyst, is also
defined to avoid noisy signal in the interrupt pin. Fig 6 of the datasheet shows how the OS pin would be controlled
for a certain temperature input. There are two different modes of operation for the interrupt in the device, the interrupt
mode and the comparator mode. They are selected using the second bit (B1) of the Config register.

The code below illustrates the use of interrupts. We use here the interrupt mode, but the same task can be achieved
with the comparator mode.

Start a new project, and paste this code in. The sensor needs to be connected as previously, with in addition the OS pin
linked to the pin D7 of the microcontroller.

The code contains a couple of new elements:

• the address of the registers TOS and THYST are introduced, as well as some code to set the interrupt and hys-
teresis temperatures. The code essentially does the opposite of what we did to read the temperature. There are
only 9 meaningful bits for these registers; the operation ” & 0xFF80” is a bitwise AND operation on the 16-bit of
data and the binary number “1111111110000000”; it essentially makes sure that we set to 0 the 7 least significant
bits of the i16 variable.

• The interrupt pin is active when its value is low, so we should trigger the interrupt when OS goes from high
to low. We therefore set the interrupt using the function “fall” rather than “rise” as introduced in the previous
activity.

When the code is running, you should be able to raise the temperature enough with your fingers to trigger the interrupt
and turn the blue led on. As the sensor cools down, as new interrupt is triggered once the temperature goes below 26
degree Celsius, turning the blue led off. Each time an interrupt is triggered, a red led should also flash on the sensor,
indicating the state of the OS pin (led is on when OS is low).

#include "mbed.h"
#include "stdint.h" //This allow the use of integers of a known width
#define LM75_REG_TEMP (0x00) // Temperature Register
#define LM75_REG_CONF (0x01) // Configuration Register
#define LM75_ADDR (0x90) // LM75 address

#define LM75_REG_TOS (0x03) // TOS Register
#define LM75_REG_THYST (0x02) // THYST Register

I2C i2c(I2C_SDA, I2C_SCL);

DigitalOut myled(LED1);
DigitalOut blue(LED2);

InterruptIn lm75_int(D7); // Make sure you have the OS line connected to D7

Serial pc(SERIAL_TX, SERIAL_RX);

(continues on next page)

50 Chapter 4. Activity 2: I2C bus and sensors

CUED-Device-Programming Documentation, Release 1

(continued from previous page)

int16_t i16; // This variable needs to be 16 bits wide for the TOS and THYST conversion␣
→˓to work - can you see why?

void blue_flip()
{

blue=!blue;
// The instruction below may create problems on the latest mbed compilers.
// Avoid using printf in interrupts anyway as it takes too long to execute.
// pc.printf("Interrupt triggered!\r\n");

}

int main()
{

char data_write[3];
char data_read[3];

/* Configure the Temperature sensor device STLM75:
- Thermostat mode Interrupt
- Fault tolerance: 0
- Interrupt mode means that the line will trigger when you exceed TOS and␣

→˓stay triggered until a register is read - see data sheet
*/
data_write[0] = LM75_REG_CONF;
data_write[1] = 0x02;
int status = i2c.write(LM75_ADDR, data_write, 2, 0);
if (status != 0)
{ // Error

while (1)
{

myled = !myled;
wait(0.2);

}
}

float tos=28; // TOS temperature
float thyst=26; // THYST tempertuare

// This section of code sets the TOS register
data_write[0]=LM75_REG_TOS;
i16 = (int16_t)(tos*256) & 0xFF80;
data_write[1]=(i16 >> 8) & 0xff;
data_write[2]=i16 & 0xff;
i2c.write(LM75_ADDR, data_write, 3, 0);

//This section of codes set the THYST register
data_write[0]=LM75_REG_THYST;
i16 = (int16_t)(thyst*256) & 0xFF80;
data_write[1]=(i16 >> 8) & 0xff;
data_write[2]=i16 & 0xff;
i2c.write(LM75_ADDR, data_write, 3, 0);

// This line attaches the interrupt.

(continues on next page)

4.3. What you may need to learn 51

CUED-Device-Programming Documentation, Release 1

(continued from previous page)

// The interrupt line is active low so we trigger on a falling edge
lm75_int.fall(&blue_flip);

while (1)
{

// Read temperature register
data_write[0] = LM75_REG_TEMP;
i2c.write(LM75_ADDR, data_write, 1, 1); // no stop
i2c.read(LM75_ADDR, data_read, 2, 0);

// Calculate temperature value in Celcius
int16_t i16 = (data_read[0] << 8) | data_read[1];
// Read data as twos complement integer so sign is correct
float temp = i16 / 256.0;

// Display result
pc.printf("Temperature = %.3f\r\n",temp);
myled = !myled;
wait(1.0);

}

}

Task (optional)
Could you program the same behaviour using the comparator mode of the sensor, instead of the interrupt mode?
Hint: You need to change the value of the configuration register (see section 7.4.2 of the datasheet). The code below
would set its relevant bit to select the comparator mode. You will also need to set different behaviours for the rising
and falling edges of the interrupt pin.

data_write[0] = LM75_REG_CONF;
data_write[1] = 0x00;
int status = i2c.write(LM75_ADDR, data_write, 2, 0);

Document license and copyright

These documents are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. See http:
//creativecommons.org/licenses/by-sa/4.0/ for the license.

Copyright 2017-2023 by A.J. Kabla, P.O. Kristensson, J. Durrell, F Forni.

Contact: ajk61@cam.ac.uk

52 Chapter 4. Activity 2: I2C bus and sensors

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
mailto:ajk61@cam.ac.uk

CUED-Device-Programming Documentation, Release 1

Documentation repository

These documents are managed at:

https://github.com/CambridgeEngineering/PartIB-Computing-Device-Programming

4.3. What you may need to learn 53

https://github.com/CambridgeEngineering/PartIB-Computing-Device-Programming

	Introduction
	Device programming activity
	Why such an activity?
	A few words about sponsors

	Tutorial
	Getting started
	What is a microcontroller?
	ARM & mbed microcontrollers
	Unboxing and powering the microcontroller
	Working with ARM’s online mbed development environment

	A first project
	Creation of a new project
	Dissecting the sample code
	Installing the code on your micro-controller

	Keep going
	Functions
	Physical input with a push button

	Debugging
	Errors
	Compile time errors
	Execution time errors
	Debugging strategies

	Using the serial port to monitor and debug programs
	Example
	Catching the output from Python

	Serial communication
	Receiving strings from the computer
	Creating a simple python interface
	Delegating work to the microcontroller
	Python serial library

	A more complex example

	Activity 1: Memory and interrupts
	Learning objectives
	Task to complete
	What you may need to learn
	Pointers
	Memory and address of variables
	Why is this useful?
	Function pointers

	Arrays
	Declaring arrays and accessing their elements
	Passing arrays to functions
	Example

	Optional - Dynamic memory allocation
	Interrupts
	LED toggle
	Pin interrupts
	Mechanical switches and debouncing

	Interrupts (continued)
	LED toggle 2.0
	Callback functions need to be small
	Time interrupts
	No time to waste!

	Activity 2: I2C bus and sensors
	Learning objectives
	Task to complete
	What you may need to learn
	I2C bus and devices
	What is I2C?
	Connecting an I2C device to your microcontroller
	The data sheet of an I2C device

	Soldering
	General information about soldering
	DIY in the EIETL
	The Science of soldering

	Connecting and testing the device
	Connecting the device
	Testing that the device is able to communicate and check its address
	Getting your first temperature measurements

	I2C communication with the LM75 sensor
	Device registers
	Reading and writing on the registers
	I2C library functions
	Converting the raw data into a temperature

	LM75 sensor and interrupts
	Hardware interrupt

